转载地址:http://blog.sina.com.cn/s/blog_6163bdeb0102dxmf.html
GJ:看到一个介绍COMSOL解决物理问题弱形式的文档,感觉很牛啊,通过COMSOL Multiphysics的弱形式用户界面来求解更多更复杂的问题,这绝对是物理研究的利器啊!而且貌似COMSOL是唯一可以直接使用弱形式来求解问题的软件。
为什么要理解PDE方程的弱形式?
一般情况下,PDE方程都已经内置在COMSOL Multiphysics的各个模块当中,这种情况下,没有必要去了解PDE方程和及其相关的弱形式。有时候可能问题是没有办法用COMSOL Multiphysics内置模块来求解的,这个时候可以使用经典PDE模版。但是,有时候可能经典PDE模版也不包括要求解的问题,这个时候就只能使用弱形式了(虽然这种情况是极少数的)。另一个原因就是弱形式有时候描述问题比PDE方程紧凑的多。还有,如果你是一个教授去教有限元分析方法,可以帮助学生们直接利用弱形式来更深入的了解有限元。最后,你对有限元方法了解的越多,对于COMSOL中的一些求解器的高级设置就懂得更多。
一个重要的事实是:在所有的应用模式和PDE模式求解的时候,COMSOL Multiphysics都是先将方程式系统转为了弱形式,然后进行求解。
物理问题的三种描述方式
1. 偏微分方程
2. 能量最小化形式
3. 弱形式
PDE问题常常具有最小能量问题的等效形式,这让人有一种直觉,那就是PDE方程都可以有相应的弱形式。实际上这些PDE方程和能量最小值问题只是同一个物理方程的两种不同表达形式罢了,同样,弱形式(几乎)是同一个物理方程的第三个等效形式。我们必须记住,这三种形式只是求解同一个问题的三种不同形式――用数学方法求解真实世界的物理现象。根据不同的需求,这三种方式又有各自不同的优点。
三种不同形式的求解
PDE形式在各种书籍中比较常见,而且一般都提供了PDE方程的解法。能量法一般见于结构分析的文献中,采用弹性势能最小化形式求解问题是相当自然的一件事。当我们的研究范围超出了标准有限元应用领域,比如传热和结构,这个时候弱形式是不可避免的。化工中的传质问题和流体中的N-S方程都是没有办法用最小能量原理表述出来的。
弱形式的特点
PDE方程是带有偏微分算子的方程,而能量方程是以积分形式表达的。积分形式的好处就是特别适合于有限元方法,而且不用担心积分变量的不连续,这在偏微分方程中比较普遍。弱形式也是积分形式,拥有和积分形式同样的优点,但是他对积分变量的连续性要求更低,可以看作是能量最小化形式的更一般形式。最重要的是,弱形式非常适合求解非线性的多物理场问题,这就是COMSOL Multiphysics的重点了。
一般性问题的弱形式
正如前面所提到的,弱形式只是PDE方程的一种推广形式,它对变量的连续性要求比较低。那么能量方法呢?如果有一个定义好了的能量来最小化,那么能量法和弱形式是一致的。但是,在下列情形下,弱形式更具有适用性:假如PDE方程没有相对应的能量可以进行最小化。在这种情况下,弱形式仍然是适用的。由于弱形式对解的要求较低,所以说弱形式比PDE和能量最小化适用范围更广泛。
GJ:弱形式和最小能量形式的区别就在于虚位移δu与试函数v的差别,如下面两式
也就是说,泛函求极值即为泛函的变分为0,如上面的式子1,所以泛函的有限元解对任意扰动δu成立,而从式子2可以看到,弱形式的解只是对自己设定的试函数v成立。所以泛函求极值得到近似函数是弱形式的特殊形式,即弱形式的试函数v可以任意取而求得的近似函数,所以从这种意义上说泛函形式求得的近似解更完备。
但很多情况下无法得到PDE问题的泛函形式(变分原理里提到,只有满足一定条件的算子才有对应的泛函),而此时PDE的弱形式是始终存在的,所以弱形式比泛函更广泛。
另外还会发现两者的一个区别是泛函的网格离散化不是转化为泛函变分后求解的,而是直接在泛函中带入带未知参数的近似函数,从而转化为函数的极值,进而得到未知参数的方程,求得未知参数,而弱形式的离散化则是在弱形式下直接离散化。前面提到泛函形式的解相当于对弱形式的任意试函数成立的解,这个任意性隐藏在了泛函变分里。