学习斯坦福机器学习—第四课

1、最速下降法和牛顿法

1.1 最速下降法

计算步骤如下:

(1)给定初始点x(1)R(n)x(1)∈R(n),允许误差ϵϵ>0,置k=1k=1

(2)计算搜索方向d(k)=f(x(k))d(k)=−▽f(x(k))

(3)若||d(k)||ϵ||d(k)||≤ϵ,则停止计算;否则,从x(k)x(k)沿d(k)d(k)进行一维搜索,求λkλk,使得

f(x(k)+λkd(k))=min(f(x(k)+λd(k)))f(x(k)+λkd(k))=min(f(x(k)+λd(k)))

其中保证所求的λk0λk≥0

(4)置x(k+1)=x(k)+λkd(k)x(k+1)=x(k)+λkd(k),置k=k+1k=k+1,转到步骤(2)。

1.2 牛顿法

f(x)f(x)是二次可微实函数,又设x(k)x(k)f(x)f(x)的极小值的一个估计,f(x)f(x)x(k)x(k)的二阶泰勒展开式为:

f(x)f(x(k))+f(x(k))T(xx(k))+12(xx(k))T2f(x(k))(xx(k))f(x)≈f(x(k))+▽f(x(k))T(x−x(k))+12(x−x(k))T▽2f(x(k))(x−x(k))

对上式求导得: 
f(x(k))+2f(x(k))(xx(k))=0▽f(x(k))+▽2f(x(k))(x−x(k))=0

2f(x(k))▽2f(x(k))可逆,得到牛顿法的迭代公式:

x(k+1)=x(k)f(x(k))2f(x(k))x(k+1)=x(k)−▽f(x(k))▽2f(x(k)).

当牛顿法收敛时,有下列关系:||x(k+1)x¯¯¯||c||x(k)x¯¯¯||2||x(k+1)−x¯||≤c||x(k)−x¯||2,因而其具有二次收敛性。

对于二次凸函数,牛顿法经过有限次迭代必定能达到极小值,这种性质称为二次终止性。

2、广义线性分布

广义高斯模型是基于指数分布族的,指数分布族的原型如下: 
P(y;η)=b(y)exp(ηTT(y)a(η))P(y;η)=b(y)exp⁡(ηTT(y)−a(η))

其中ηη为自然参数,它可能是一个向量,而T(y)T(y)叫做充分统计量,它也可能是一个向量,通常T(y)=yT(y)=y

2.1 伯努利分布

概率分布为:P(y=1|x)=ϕP(y=1|x)=ϕ

P(y|x)=ϕy(1ϕ)(1y)=exp[ylogϕ+(1y)log(1ϕ)]=exp[ylog(ϕ1ϕ)+log(1ϕ)]P(y|x)=ϕy(1−ϕ)(1−y)=exp[ylog⁡ϕ+(1−y)log⁡(1−ϕ)]=exp⁡[ylog⁡(ϕ1−ϕ)+log⁡(1−ϕ)]

其中η=log(ϕ1ϕ)η=log⁡(ϕ1−ϕ),求得ϕ=11+exp(η)ϕ=11+exp⁡(−η)。若g(η)=11+exp(η)g(η)=11+exp⁡(−η),那么g(η)g(η)为正则响应函数,g(η)1g(η)−1为正则关联函数。

2.2 高斯分布

概率密度函数为:p(y|x)=1(2π)σexp((yμ)22σ2)p(y|x)=1(2π)σexp⁡(−(y−μ)22σ2)

p(y|x)=1(2π)σexp((yμ)22σ2)=1(2π)σexp((y2+μ22yμ)2σ2)=1(2π)σexp(y22σ2)exp(2yμ2σ2μ22σ2)p(y|x)=1(2π)σexp⁡(−(y−μ)22σ2)=1(2π)σexp⁡(−(y2+μ2−2yμ)2σ2)=1(2π)σexp⁡(−y22σ2)exp⁡(2yμ2σ2−μ22σ2)

2.3 广义线性回归的三个假设

(1)y|x;θy|x;θ服从参数为ηη的指数族分布;

(2)给定xx后,我们希望的输出为:h(x)=E(T(y)|x)h(x)=E(T(y)|x);

(3)η=θTx[ηi=θTix]η=θTx[ηi=θiTx].

2.3.1 伯努利分布

伯努利分布满足广义线性回归的三个假设,其中h(x)=ϕ=11+exp(η)=11+exp(θx)h(x)=ϕ=11+exp⁡(−η)=11+exp⁡(−θx)

2.3.2 softmax回归

y1,2,...,ky∈1,2,...,k

参数:ϕ1,ϕ2,...,ϕkϕ1,ϕ2,...,ϕk,其中P(y=i)=ϕiP(y=i)=ϕi。其中ϕk=1k1i=1ϕiϕk=1−∑i=1k−1ϕi

对于y1,2,...,ky∈1,2,...,k

T(1)=[1,0,...,0]TT(1)=[1,0,...,0]TT(2)=[0,1,...,0]TT(2)=[0,1,...,0]T,…,T(k1)=[0,0,...,1]TT(k−1)=[0,0,...,1]TT(k)=[0,0,...,0]TT(k)=[0,0,...,0]T

T(y)i=1{y==i}T(y)i=1{y==i}

P(y|x)=ϕ1{y=1}1ϕ1{y=2}2...ϕ1{y=k}k=ϕT(y)11ϕT(y)22...ϕ1k1i=1T(y)ik=exp{T(y)1logϕ1+T(y)1logϕ2]+...+[1k1i=1T(y)i]logϕk}=exp{[T(y)1,T(y)2],...,T(y)k1]T.[logϕ1ϕk,logϕ2ϕk,...,logϕk1ϕk]+logϕk}P(y|x)=ϕ11{y=1}ϕ21{y=2}...ϕk1{y=k}=ϕ1T(y)1ϕ2T(y)2...ϕk1−∑i=1k−1T(y)i=exp⁡{T(y)1log⁡ϕ1+T(y)1log⁡ϕ2]+...+[1−∑i=1k−1T(y)i]log⁡ϕk}=exp⁡{[T(y)1,T(y)2],...,T(y)k−1]T.[log⁡ϕ1ϕk,log⁡ϕ2ϕk,...,log⁡ϕk−1ϕk]+log⁡ϕk}

η=[logϕ1ϕk,logϕ2ϕk,...,logϕk1ϕk]T,a=logϕk,b(y)=1.η=[log⁡ϕ1ϕk,log⁡ϕ2ϕk,...,log⁡ϕk−1ϕk]T,a=−log⁡ϕk,b(y)=1.

ϕi=exp(ηi)1+ki=1exp(ηi)=exp(θTix)1+ki=1exp(θTix)ϕi=exp⁡(ηi)1+∑i=1kexp⁡(ηi)=exp⁡(θiTx)1+∑i=1kexp⁡(θiTx).

hθ(x)=[ϕ1,ϕ2,...,ϕk]Thθ(x)=[ϕ1,ϕ2,...,ϕk]T.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值