Newton法(牛顿法)

本文介绍了牛顿法的基本思想、算法流程及修正方法。牛顿法在正定二次函数上具有二次终止性,收敛速度快。当遇到Hesse矩阵为奇异矩阵或非奇异矩阵的情况,文章提供了相应的处理策略,包括采用直线搜索和拟Newton方法。
摘要由CSDN通过智能技术生成

上一篇博客我们讲了最速下降法(梯度下降法),梯度下降法简单,但是收敛的速度较慢。这一篇博客将会讲述牛顿法,牛顿法对于正定二次函数具有二次终止性,有较好的收敛速度。

   注:(二次终止性)对于 n 元的正定二次函数求极小值问题的算法,如果从任意点出发,经过有限次迭代就能够求得极小点,我们称这种算法具有二次终止性。具有二次终止性的算法,对于一般函数,一般也有较好的收敛速度。可知最速下降算法不具有二次终止性。

基本思想

如果目标函数 f(x) 具有二阶连续偏导数,其Hesse矩阵为 2f(x) (记 G(x)=2f(x) )为正定矩阵。在我们从 xk xk+1 的迭代过程中,我们可以将函数 f(x) xk 处做Taylor展开,如下。

f(x)Q(x)=f(xk)+g(xk)T(xxk)+12(xxk)TG(x)(xxk)
其中, g(x) 为函数 f(x) 的一节偏导数。我们可以对 Q(x) 求极小值,由于 G(x) 是正定的,所以 Q(x) 是正定二次函数,令 Q(x)=0 ,即
g(xk)+G(xk)(xxk)=0
由此可求得
x=xkG
  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值