最优化理论与算法(袁亚湘)学习笔记---最优性条件和最优化算法的基本结构

1.4 无约束优化问题的最优性条件

考虑无约束优化问题

                                                                                 min_{x\in R^{n}} f(x)                                                                            (1)           优化问题一般分为局部最优和全局最优,局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。下面给出局部极小值和全局极小值的定义。

极小值的类型

局部极小值(Local minimum)和全局最小值(Global minimum)

def 1 :      {\exists} \delta >0,s.t {\forall} x \in R^{n},and \vert| x-x^{*}| \vert<\delta, f(x) \ge f(x^{*}),则称x^{*}为f的局部极小值点(局部最优点)。

def 2:      {\forall} x \in R^{n}, f(x) \ge f(x^{*}),则称x^{*}为f的全局(总体)极小值点(全局最优点)。

1.4.1 必要条件

对于无约束优化问题,要根据极小值的定义去判断是否为最优点几乎是不可能的,因此有必要去寻找一个可行的判断方法。所以学者就提出一阶和二阶必要条件的判断判断方法。即在已知是最优点,能推导出什么样的结果。

【一阶必要条件】

Th 1:   f:D\subset R^{n}\rightarrow R^{1}在开集D上连续可微,且x^{*} \in D(1)的局部极小点,则

                                                                              \nabla f(x^{*}) = 0

【二阶必要条件】 

Th 2 :    f:D\subset R^{n}\rightarrow R^{1}在开集D上二阶连续可微,且x^{*} \in D(1)的局部极小点,则

                                                                \nabla f(x^{*}) = 0,\nabla^{2} f(x^{*}) \ge 0

证明方法与一阶必要条件类似。

【注】 

         满足 \nabla f(x^{*}) = 0  的点称为函数f的平稳点或驻点(数分),但此时的 x^{*} 可能是极小值点,也有可能是极大值点,甚至可能既不是极小值点也不是极大值点(example:f(x)=x^{3}在x=0处)。称既不是极小值也不是极大值的点称之为鞍点

        讨论在已知是最优点,能得到两个必要条件,那么一个自然的想法就是如何判断一个点是不是最优点。换而言之,在满足什么条件下,我们可以得到最优点(或者极小值)。

【二阶充分条件】

        Th  3:     若f:D\subset R^{n}\rightarrow R^{1}在开集D上二阶连续可微,且   \nabla f(x^{*}) = 0,\nabla^{2} f(x^{*}) > 0,则x^{*} \in D 是问题(1)的严格局部极小值点。

 【充要条件】

Th 4 :  若上述的 f(x) 是凸函数,这x^{*} \in D 是最优点的充分必要条件是\nabla f(x^{*}) = 0

 1.5   最优化方法的结构

【基本结构】

(1)给定初始值 x_{0} 和某种终止条件(下面会说到)。

(2)确定搜索方向 d_{k}(即按照一定的规则,构造 f 在x_{k}点的下降方向为搜索方法)。

(3)确定步长 \alpha_{k} ,使得目标函数在某种意义下是下降的 。

(4)定义格式:x_{k+1}=x_{k}+\alpha_{k}d_{k}

(5)若 x_{k+1} 满足某种终止条件,则停止迭代,得到最优点x_{k-1},否则重复(2)的操作。

1.5.1 算法的评价标准

         

(a)收敛速度:

        (a1)Q-\alpha  收敛:{\exists} ~~\alpha >0,以及与迭代次数 k 无关的常数 q >0,   s.t

                                                                   \lim\limits_{k \to \infty} \frac{\vert| x_{k+1}-x^{*}|\vert}{\vert |x_{k}-x^{*}|\vert^{\alpha}}=q

                则称算法产生的迭代点列{x_{k}} 具有Q-\alpha 阶收敛速度。  

        (a2)R-收敛(根收敛速度):设R_{p}=\left\{\begin{array}{ll} \lim\limits_{k \to \infty}sup \vert | x_{k}-x^{*}| \vert^{1/k}&if ~~p=1\\ \lim\limits_{k \to \infty}sup \vert | x_{k}-x^{*}| \vert^{1/p^{k}}&if ~~p>1\\ \end{array}\right.\     

                 则称算法产生的迭代点列{x_{k}} 具有R-阶收敛速度。     

关于收敛的具体定义以及相关概念https://zhuanlan.zhihu.com/p/278151142

(b) 全局收敛与局部收敛

 (c)二次终止性

二次终止性是指对于严格凸的二次函数,算法能在有限迭代步内达到最优值点。

        除以上,一个算法的好坏还依赖于稳定性,计算存储的消耗等多方面因素,且数值实验不能用严瑾的数学证明保证算法具有良好的性态,理想情况下是根据收敛性和收敛速度的理论选择适当的算法来进行数值实验。

1.5.2 终止准则

方法1:下一步迭代点减去上一步迭代点的某种范数值小于等于我们想要精度参数 \varepsilon_{1} .即

\vert |x_{k+1}-x_{k}| \vert \leq \varepsilon_{1}

缺点:可能  x_{k+1} 和 x_{k} 之间的差值很小,但函数值之间的差值很大。

方法2:下一步迭代点与上一步迭代点的函数值的绝对值之差小于我们想要的精度参数 \varepsilon_{2} , 即

\vert f(x_{k+1})-f(x_{k}) \vert \leq \varepsilon_{1}

                             缺点:函数值差值很小,但是对应的迭代点列之间的差值很大。

方法3:(Himmeblau) 同时采用方法1和方法2 ,即当\vert|x_{k}|\vert>\varepsilon_{2} 和\vert f(x_{k}) \vert > \varepsilon_{2}时,采用

\frac{\vert | x_{k+1}-x_{k}| \vert}{\vert| x_{k}| \vert} \leq \varepsilon_{1},\frac{\vert f( x_{k+1})-f(x_{k}) \vert}{\vert f(x_{k}) \vert} \leq \varepsilon_{1}

                               否则采用:

\vert |x_{k+1}-x_{k}| \vert \leq \varepsilon_{1}\vert f(x_{k+1})-f(x_{k}) \vert \leq \varepsilon_{1}

方法 4 :对于有一阶数信息的函数,且收敛速度不太快的算法,如CG(共轭梯度算法),可采用如下终止准则:

\vert|g_{k}|\vert \leq \varepsilon_{3}

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最优化理论与方法袁亚pdf》是袁亚所著的一本关于最优化理论和方法的教材,本书共分为六章,分别介绍了最优化问题的基本概念、最优化理论的数学基础、无约束极值问题、约束极值问题、对偶问题及非线规划等内容。 首先,本书介绍了最优化问题的定义基本概念和数学描述,旨在帮助读者了解最优化问题的本质和相关的数学知识。其次,本书详细介绍了最优化理论的数学基础,包括凸集、凸函数、KKT条件等内容,这些基本理论为后续章节的学习和应用提供了前提。 然后,本书重点讲解了无约束极值问题和约束极值问题的求解方法。对于无约束极值问题,介绍了梯度下降法、共轭梯度法等常用的优化算法;对于约束极值问题,介绍了等式约束问题和不等式约束问题的拉格朗日函数和KKT条件等相关内容。 此外,本书还涉及到对偶问题的理论和求解方法,以及非线规划问题的求解。这些内容为读者提供了更广阔的应用领域和方法选择。 总的来说,袁亚的《最优化理论与方法》通过系统的介绍和讲解,使读者能够了解最优化问题的基本概念、数学理论及其实际应用,并为读者提供了一些常用的优化方法和技巧。无论是作为学习教材,还是作为参考书,本书对于研究最优化理论和方法的读者来说都是一本不可多得的资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值