傅里叶变换推导

图像傅里叶变换

1.周期函数的分解猜想

    数学家总是非常伟大的,数学家拉格朗日大家从小到大在数学课本里面都能见到他的身影,他和一些数学家发现:一些周期函数可以分解为三角函数之和。在当时另一个资历比较浅的数学家傅里叶论断:任何周期函数都可以分解为三角函数之和。有意思的是拉格朗日对此持反对意见并指出:带有棱角的周期函数肯定不能由三角函数合成。由于当时朗格朗日是威望太高,所有傅里叶论断当时并没有得到大家关注和认可,直到拉格朗日死后他的相关论文才得以发表。最终事实证明他们二人说法都是对的,带有棱角的周期函数确实肯定不能由三角函数合成,只能是由无限个三角函数去无限逼近。


在这里插入图片描述

2. 如何分解周期函数

猜想归猜想,那一个周期函数到底分解成什么形式的三角函数之和。

f(x) = 三角函数之和?
2.1 常数项
y(x)=C,C∈R
常数项是一个任意周期的周期函数,最容易用来调节函数形状,所以组成中应该有一个常数项,即:
f(x) = C+⋯
2.2 sinx和cosx

说到三角函数,最终于让人想到的肯定是sinx和cosx,应为它两个是最简单的三角函数,我们都知道任意一个二维向量都可以由x轴方向的单位向量i和y轴方向的单位向量j组成,sinx和cosx在三角函数中的就好比向量中的i和j。当然还有一些性质也验证了这一猜想。
一个事实:任意函数可以分解为奇函数和偶函数之和。加减法不改变函数的奇偶性。


f(x)=(f(x)+f(-x))/2+(f(x)-f(-x))/2=f_even+f_odd

恰巧sinx是一个最简单的三角函数奇函数,cosx是一个最简单的三角函数偶函数。所以又可以猜想组合和中应该有sinx和cosx,即

f(x)=C+∑_n▒〖sin⁡(x)+cos(x)〗

2.3 规定三角函数周期T保证周期

    对于一个周期函数而言最重要的当然是它的周期T,目前的组合形式的周期显然是2π,并不是我们要的T,那么怎么保证我们是三角函数之和构成的周期是T呢?
首先三角函数


sin⁡(2π/T x)和 cos⁡(2π/T x)

    他们的周期肯定是T,无数个他们相加周期也肯定是T,当然我们的三角函数不可能每个周期都正好是T,更一般的一个周期为T/2、T/3、…、T/n的周期函数的周期一定也是T。所以只要三角函数的周期是T/n,那么它们组成的函数周期一定是T,故

f(x)=C+∑_n▒〖sin⁡(2πn/T x)+cos(2πn/T x)〗

2.4规定三角函数振幅保证形状

    就我们目前的f(x)组合而言,显然不能构成任意形状的周期函数。三角函数三要素:周期、振幅、相位。其中周期和振幅是可以影响三角函数形状的参数,它的周期我们已经定好了,所以现在应该规定振幅了,想想不同的周期函数拥有不同的形状,所以我们可能需要无数个不同振幅不同最小周期的三角函数。即


f(x)=C+∑_n▒〖〖a_n cos〗⁡(2πn/T x)+b_n sin(2πn/T x)〗

2.5最终形式

一个周期函数分解


f(x)=C+∑_n▒〖〖a_n cos〗⁡(2πn/T x)+b_n sin(2πn/T x)〗

有常数项
奇函数和偶函数可以组合出任意函数
周期为 T
调整振幅,逼近原函数

3如何求组合项

3.1 复平面内向量概念

在此之前有必要提一下欧拉公式:


e^iθ=cosθ+isinθ

至于欧拉公式的推导(由泰勒公式)在此就不说了。
在复平面类,
在时间 t 轴上,把e^it 向量的虚部记录下来,得到的就是 sin(t)。
在时间 t 轴上,把e^it 向量的实部记录下来,得到的就是 cos(t)。
通过欧拉公式得出一个结论:在复平面内e^iwt是一个向量,sin(wt)和cos(wt)也是一个向量。
同时函数向量的点积:

f(x)·g(x)=∫_0^T▒f(x)g(x)dx

3.2 正交基

学过几何的都知道,如果两个向量的点积为0(垂直),那么称它们为正交基。
例如:
g(x)=sinx+cosx
由于:


sinx·cosx=∫_0^2π▒sinxcosxdx=1/2 ∫_0^2π▒sin2xdx=0

故:sinx和cosx就是一对正交基。
求正交基的系数:
回顾一个向量A=3i+4j,其中向量i=(1,0),向量j=(0,1),向量A=(3,4)。
假设现在我们知道A=xi+yj,和向量i=(1,0),向量j=(0,1),向量A=(3,4)要求系数x和y。求x则是将A的模投影在i方向上然后除以i的模即可,即

(|A|cosθ)/(|i|)=(|A|A·i)/(|i||A||i|)=(A·i)/(i·i)

对于

g(x)=asinx+bcosx

如果要求系数a则是:

a=(∫_02π▒g(x)sinxdx)/(∫_02π▒sinxsinxdx)

3.3 求组合系数

回顾一下我们分解得到的三角函数组合:


f(x)=C+∑_n▒〖〖a_n cos〗⁡(2πn/T x)+b_n sin(2πn/T x)〗

很明显

在这里插入图片描述

构成了一组正交基。
那么:

在这里插入图片描述

4 傅里叶级数的另一种表达

欧拉公式

e^iθ=cosθ+isinθ
那么

sinθ=(eiθ-e(-iθ))/2i

cosθ=(eiθ+e(-iθ))/2


f(x)=C+∑_n▒〖〖a_n cos〗⁡(2πn/T x)+b_n sin(2πn/T x)〗

可以写成

f(x)=∑_(-∞)^∞▒〖c_n e^(i 2πn/T) 〗

其中:

在这里插入图片描述

5 傅里叶级数到傅里叶变换

上述讲的都是傅里叶级数,傅立叶级数是针对周期函数的,为了可以处理非周期函数,需要傅立叶变换。
思路:

在这里插入图片描述
将非周期函数看成是周期无限大的周期函数。
傅里叶变换


F(u)=∫_(-∞)∞▒〖f(t)e(-j2πut) dt〗

傅里叶反变换:

f(t)=∫_(-∞)∞▒〖F(u)ej2πut dt〗

周期和频率成反比的关系,周期无限变大,频率间隔就会无限减小,逼近连续。
PS;图像傅里叶频谱图与图像对应关系可参看: https://blog.csdn.net/a369189453/article/details/86259092

  • 11
    点赞
  • 78
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值