梯度为什么是函数变化最快的方向

(本文转自于知乎https://zhuanlan.zhihu.com/p/24913912

导数

导数的几何意义可能很多人都比较熟悉: 当函数定义域和取值都在实数域中的时候,导数可以表示函数曲线上的切线斜率。 除了切线的斜率,导数还表示函数在该点的变化率

几何意义

直白的来说,导数代表了在自变量变化趋于无穷小的时候,函数值的变化与自变量变化的比值代表了导数,几何意义有该点的切线。物理意义有该时刻的(瞬时)变化率...

注意在一元函数中,只有一个自变量变动,也就是说只存在一个方向的变化率,这也就是为什么一元函数没有偏导数的原因。

偏导数

既然谈到偏导数,那就至少涉及到两个自变量,以两个自变量为例,z=f(x,y) . 从导数到偏导数,也就是从曲线来到了曲面. 曲线上的一点,其切线只有一条。但是曲面的一点,切线有无数条。

而我们所说的偏导数就是指的是多元函数沿坐标轴的变化率.

f_{x} (x,y)指的是函数在y方向不变,函数值沿着x轴方向的变化率

f_{y} (x,y)指的是函数在x方向不变,函数值沿着y轴方向的变化率

图像如下

几何意义

  • 偏导数f_{x} (x_{0},y_{0} )就是曲面被平面y=y_{0}所截得的曲面在点M_{0}处的切线M_{0}T_{x}对x轴的斜率
  • 偏导数f_{y} (x_{0},y_{0} )就是曲面被平面x=x_{0}所截得的曲面在点M_{0}处的切线M_{0}T_{y}对y轴的斜率

可能到这里,读者就已经发现偏导数的局限性了,原来我们学到的偏导数指的是多元函数沿坐标轴的变化率,但是我们往往很多时候要考虑多元函数沿任意方向的变化率,那么就引出了方向导数.

方向导数

终于引出我们的重头戏了,方向导数,下面我们慢慢来走进它

假设你站在山坡上,相知道山坡的坡度(倾斜度)

山坡图如下:

假设山坡表示为z=f(x,y),你应该已经会做主要俩个方向的斜率.

y方向的斜率可以对y偏微分得到.

同样的,x方向的斜率也可以对x偏微分得到

那么我们可以使用这俩个偏微分来求出任何方向的斜率(类似于一个平面的所有向量可以用俩个基向量来表示一样)

现在我们有这个需求,想求出u方向的斜率怎么办.假设z=f(x,y)为一个曲面,p(x_{0} ,y_{0} )f定义域中一个点,单位向量u =cos\theta i+sin\theta j的斜率,其中\theta是此向量与x轴正向夹角.单位向量u可以表示对任何方向导数的方向.如下图:

那么我们来考虑如何求出u方向的斜率,可以类比于前面导数定义,得出如下:

f(x,y)为一个二元函数,u =cos\theta i+sin\theta j为一个单位向量,如果下列的极限值存在

\lim_{t \rightarrow 0}{\frac{f(x_{0}+tcos\theta ,y_{0}+tsin\theta )-f(x_{0},y_{0})}{t} }此方向导数记为D_{u}f

则称这个极限值是f沿着u方向的方向导数,那么随着\theta的不同,我们可以求出任意方向的方向导数.这也表明了方向导数的用处,是为了给我们考虑函数对任意方向的变化率.

 

在求方向导数的时候,除了用上面的定义法求之外,我们还可以用偏微分来简化我们的计算.

表达式是D_{u}f(x,y)=f_{x}(x,y)cos\theta +f_{y}(x,y)sin\theta(至于为什么成立,很多资料有,不是这里讨论的重点)

那么一个平面上无数个方向,函数沿哪个方向变化率最大呢?

目前我不管梯度的事,我先把表达式写出来:

D_{u}f(x,y)=f_{x}(x,y)cos\theta +f_{y}(x,y)sin\theta

A=(f_{x}(x,y) ,f_{y}(x,y)),I=(cos\theta ,sin\theta )

那么我们可以得到:

D_{u}f(x,y)=A\bullet I=\left| A \right| *\left| I \right| cos\alpha(\alpha为向量A与向量I之间的夹角)

那么此时如果D_{u}f(x,y)要取得最大值,也就是当\alpha为0度的时候,也就是向量I(这个方向是一直在变,在寻找一个函数变化最快的方向)与向量A(这个方向当点固定下来的时候,它就是固定的)平行的时候,方向导数最大.方向导数最大,也就是单位步伐,函数值朝这个反向变化最快.

好了,现在我们已经找到函数值下降最快的方向了,这个方向就是和A向量相同的方向.那么此时我把A向量命名为梯度(当一个点确定后,梯度方向是确定的),也就是说明了为什么梯度方向是函数变化率最大的方向了!!!(因为本来就是把这个函数变化最大的方向命名为梯度)

  • 7
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值