机器学习实战 - Logistic回归

本文介绍了Logistic回归在二类分类中的应用,使用Sigmoid函数替代阶跃函数进行平滑处理。通过梯度上升法求解最大似然估计的参数,进而确定分类概率。文中详细解释了为何选择梯度上升法,并通过实例展示了Logistic回归的实现过程,包括数据预处理、模型训练和效果评估。在大数据场景下,还探讨了随机梯度上升法作为优化策略的优势。
摘要由CSDN通过智能技术生成

假设我们有 一些数据点,我们用一条直线对其进行拟合,那么拟合的过程就称为回归。

实际上Logistic回归经常用于二类分类,也就是一般只用于只存在两种诸如“是”与“不是”等的问题,我们需要这么一个函数,能接收所有输入然后预测出类别。要找到只存在两种分类的函数,阶跃函数是个不错的选择,但是有一个问题,阶跃函数在跳跃点处如何处理?所以我们引入另一个函数——Sigmoid函数代替阶跃函数,Sigmoid函数的定义如下:

h(z)=11+ez
这里我们需要确定输入的参数 z 来得到相应的 σ 值,假设我们将两种结果映射成数字上的0和1,根据sigmoid函数的图像:

这里写图片描述

我们可以利这个式子来进行分类:这里写图片描述

由上面的图像和公式都可以得出,这里不存在阶跃函数中的跳跃点,可以接受任何输入,那么 z 是什么?实际上, z 与函数的自变量有关,我们也可以称这些自变量为“特征”,一个自变量就是一个特征。 z 的定义如下:

z=θ0x0+θ1x1+θ2x2+...+θnxn
这里的 xi 就是我们函数的第 i 个自变量,或者说是描述某个问题所使用的“特征”。

我们将使用梯度上升法来求解二分类问题,很多博客和文章甚至于本书都没有简述为什么要使用梯度上升法来解决这个问题,这里我们来描述一下,让读者更加清晰。首先,我们得知道梯度是什么,在数学上的定义是,梯度是某个函数关于所有自变量求偏导得到的一个向量,如果我们对函数中的某一个变量进行求偏导,得到的在某个点上的偏导数就是该函数“沿着这个特征变量变化速率最快的方向”,默认为上升(也就是增加幅度最大的方向),加个负号就变成了下降幅度最大的方向。现在我们不取某一个特征,而是取所有特征组成的梯度向量来使用,就变成了该函数综合考虑所有的特征之后“整体”变化最快的方向,我们换个术语可以理解为“最大化收益”。梯度上升法就是求函数最大值的方法,不过其步骤是一步一步逼近最大值,相同的,梯度下降法就是求函数最小值的方法。

我们结合之前的讨论,可以综合得出我们所需要求的函数是有关得到相应分类概率的函数:

P(y|x)=(11+ez)y(111+ez)1y
也就是在输入 x 后得到类别为y的概率,这里的 y 只取0或1,实际上:

P(y|x)=(11+ez)y=1
P(y|x)=(111+ez)y=0

换句话说,当得到的类别是1的使用我们使用的是第一个式子,类别为0的使用我们使用的是第二个式子,所以总公式很好的综合了两种情况,现在我们要求得就是使得这个概率最大化,所以我们要利用梯度上升法来一步一步逼近最大值。

在知道了为何要使用梯度上升法之后,我们转过来就是要使用梯度上升法确定

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值