c++版本的opencv函数

基于C++的OpenCV常用函数

分类: OpenCV   3100人阅读  评论(2)  收藏  举报

C++版本的好处:

1、在于可以尽量避免使用指针这种危险的东西;

2、不用费心去release资源了,因为在其destructor里面,系统会自动帮你搞定。

3、在某些情况下会比C版本运行速度快。

在文件中包含 using namespace cv;

 


1. Imread(CvLoadImage):loads an image from a file;

2.        imshow(cvShowImage):displays an image in the specifiedwidow;

3.        waitKey(cvWaitKey):waits for a pressed key;

4.        cvtColor(cvCvtColor):converts an image from one colorspace to another;

5.        reduce(cvReduce):reduces a matrix to a vector;

6.        minMaxLoc(cvMinMaxLoc):finds the global minimum andmaximum in a whole array or sub-array;

7.        namedWindow(cvNamedWindow):creates a window;

8.        destroyWindow(cvDestroyWindow):destroys a window;

9.        destroyAllWindows(cvDestroyAllWindows):destroys all of the HighGUIwindows;

10.    imwrite(cvSaveImage):saves an image to a specified file;

11.    resize(cvResize):resizes an image;

12.    pyrDown(cvPyrDown):blurs an image and downsamples it;

13.    pyrUp(cvPyrUp):upsamples an image and then blursit;

14.    threshold(cvThreshold):applies a fixed-level threshold toeach array element;

15.    adaptiveThreshold(cvAdaptiveThreshold):applies an adaptive threshold toan array;

16.    VideoCapthure::open(cvCaptureFromFile):open video file or a capturingdevice for video capturing;

17.    VideoCapture::isOpened:returns true if video capturinghas been initialized already;

18.    VideoCapture::release(cvReleaseCapture):closes video file or capturingdevice;

19.    VideoCapture::grab(cvGrabFrame):grabs the next frame from videofile or capturing device;

20.    VideoCaputre::retrieve(cvRetrieveFrame):decodes and returns the grabbedvideo frame;

21.    VideoCapture::read(cvQueryFrame):grabs,decodes and returns the nextvideo frame;

22.    VideoCapture::get(cvGetCaptureProperty):returns the specified VideoCaptureproperty;

23.    VideoCapture::set(cvSetCaptureProperty):sets a property in theVideoCapture;

24.    VideoWriter::open:initializes or reinitializes videowriter;

25.    VideoWriter::isOpened:returns true if video writer hasbeen successfully initialized;

26.    VideoWriter::write:writes the next video frame;

27.    Mat::row:creates a matrix header for thespecified matrix row;

28.    Mat::col:creates a matrix header for thespecified matrix column;

29.    Mat::rowRange:creates a matrix header for thespecified row span;

30.    Mat::colRange:creates a matrix header for thespecified col span;

31.    Mat::diag:extracts a diagonal from a matrix,or creates a diagonal matrix;

32.    Mat::clone:creates a full copy of the arrayand the underlying data;

33.    Mat::copyTo(cvCopy):copies the matrix to another one;

34.    Mat::convertTo(cvConvertScale):converts an array to anotherdatatype with optional scaling;

35.    Mat::assignTo:provides a functional form ofconvertTo;

36.    Mat::setTo:sets all or some of the arrayelements to the specified value;

37.    Mat::reshape:changes the shape and/or thenumber of channels of a 2D matrix without copying the data;

38.    Mat::t:transposes a matrix;

39.    Mat::inv:inverses a matrix;

40.    Mat::mul:performs an element-wisemultiplication or division of the two matrices;

41.    Mat::cross:computes a cross-product of two3-element vectors;

42.    Mat::dot:computes a dot-product of twovectors;

43.    Mat::zeros:returns a zero array of thespecified size and type;

44.    Mat::ones:returns an array of all 1’s of thespecified size and type;

45.    Mat::eye:returns an identity matrix of thespecified size and type;

46.    Mat::create:allocates new array data if needed;

47.    Mat::addref:increments the reference counter;

48.    Mat::release:decrements the reference counterand deallocates the matrix if needed;

49.    Mat::resize:changes the number of matrix rows;

50.    Mat::reserve:reserves space for the certainnumber of rows;

51.    Mat::push_back:adds elements to the bottom of thematrix;

52.    Mat::pop_back:removes elements from the bottomof the matrix;

53.    Mat::locateROI:locates the matrix header within aparent matrix;

54.    Mat::adjustROI:adjusts a submatrix size andposition within the parent matrix;

55.    Mat::operator:extracts a rectangular submatrix;

56.    Mat::operatorCvMat:creates the CvMat header for thematrix;

57.    Mat::operatorIplImage:creates the IplImage header forthe matrix;

58.    Mat::total:returns the total number fo arrayelements;

59.    Mat::isContinuous:reports whether the matrix iscontinuous or not;

60.    Mat::elemSize:returns the matrix element size inbytes;

61.    Mat::elemSize1:returns the size of each matrixelement channel in bytes;

62.    Mat::type:returns the type of a matrixelement;

63.    Mat::depth:returns the depth of a matrixelement;

64.    Mat::channels:returns the number of matrix channels;

65.    Mat::step1:returns a normalized step;

66.    Mat::size:returns a matrix size;

67.    Mat::empty:returns true if the array has noelemens;

68.    Mat::ptr:returns a pointer to the specifiedmatrix row;

69.    Mat::at:returns a reference to thespecified array element;

70.    Mat::begin:returns the matrix iterator andsets it to the first matrix element;

71.    Mat::end:returns the matrix iterator andsets it to the after-last matrix element;

72.    calcHist(cvCalcHist):calculates a histogram of a set ofarrays;

73.    compareHist(cvCompareHist):compares two histograms;

74.    equalizeHist(cvEqualizeHist):equalizes the histogram of agrayscale image(直方图均衡化);

75.    normalize:normalizes the norm or value rangeof an array;

76.    CascadeClassifier::CascadeClassifier:loads a classifier from a file;

77.    CascadeClassifier::empth:checks whether the classifier hasbeen loaded;

78.    CascadeClassifier::load(cvLoadHaarClassifierCascade):loads a classifier from a file;

79.    CascadeClassifier::read:reads a classifier from aFileStorage node;

80.    CascadeClassifier::delectMultiScale(cvHaarDetectObjects):detects objects of different sizesin the input image(检测图像中的目标);

81.    CascadeClassifier::setImage(cvSetImagesForHaarClassifierCascade):sets an image for detection(隐藏的cascade(hidden cascade)指定图像);

82.    CascadeClassifier::runAt(cvRunHaarClassifierCascade):runs the detector at the specifiedpoint(在给定位置的图像中运行cascade of boosted classifier);

83.    groupRectangles:groups the object candidaterectangles;

84.    split(cvSplit):divides a multi-channel array intoseveral single-channel arrays;

85.    merge(cvMerge):creates one multichannel array outof several single-channel ones;

86.    mixChannels(cvMixChannels):copies specified channels frominput arrays to the specified channels of output arrays;

87.    setMouseCallback(cvSetMouseCallback):sets mouse handler for thespecified window;

88.    bilateralFilter:applies the bilateral filter to animage(双边滤波);

89.    blur(cvSmooth):blurs an image using thenormalized box filter(均值模糊);

90.    medianBlur:blurs an image using the medianfilter(中值模糊);

91.    boxFilter:blurs an image using the boxfilter;

92.    GaussianBlur:blurs an image using a Gaussianfilter(高斯模糊);

93.    getGaussianKernel:returns Gaussian filtercoefficients;

94.    sepFilter2D:applies a separable linear filterto an image;

95.    filter2D(cvFilter2D):convolves an image with the kernel;

96.    norm(cvNorm):calculates an absolute array norm,an absolute difference norm, or a relative defference norm;

97.    flip(cvFlip):filps a 2D array around vertical,horizontal, or both axes;

98.    Algorithm::get:returns the algorithm parameter;

99.    Algorithm::set:set the algorithm parameter;

100. Algorithm::write:stores algorithm parameters in afile storage;

101. Algorithm::read:reads algorithm parameters from afile storage;

102. Algorithm::getList:returns the list of registeredalgorithms;

103. Algorithm::create:creates algorithm instance by name;

104. FaceRecognizer::train:trains a FaceRecognizer with givendata and associated labels;

105. FaceRecognizer::update:updates a FaceRecognizer withgiven data and associated labels;

106. FaceRecognizer::predict:predicts a label and associatedconfidence(e.g. distance) for a given input image;

107. FaceRecognizer::save:saves a FaceRecognizer and itsmodel state;

108. FaceRecognizer::load:loads a FaceRecognizer and itsmodel state;

109. createEigenFaceRecognizer:;

110. createFisherFaceRecognizer:;

111. createBPHFaceRecognizer:;

112. getTextSize(cvGetTextSize):calculates the width and height ofa textstring;

113. putText(cvPutText):draws a text string;

114. getStructuringElement(cvCreateStructingElementEx):returns a structuring element ofthe specified size and shape for morphological operations;

115. morphologyEx(cvMorphologyEx):performs advanced morphologicaltransformations;

116. findContours(cvFindContours):finds contours in a binary image;

117. drawContours(cvDrawContours):draw contours outlines or filledcontours;

118. minAreaRect(cvMinAreaRect2):finds a rotated rectangle of theminimum area enclosing the input 2D point set;

119. floodFill(cvFloodFill):fills a connected component withthe given color;

120. getRectSubPix(cvGetRectSubPix):retrieves a pixel rectangle froman image with sub-pixel accuracy;

121. CvSVM::CvSVM:default and training constructors;

122. CvSVM::train:trains an SVM;

123. CvSVM::train_auto:trains an SVM with optimalparameters;

124. CvSVM::predict:predicts the response for inputsample(s);

125. CvSVM::get_default_grid:generates a grid for SVMparameters;

126. CvSVM::get_params:returns the current SVM parameters;

127. CvSVM::get_support_vector:retrieves a number of supportvectors and the particular vector;

128. CvSVM::get_var_count:returns thenumber of used features(variables count);

129. CvANN_MLP(multi-layerperceptrons)::CvANN_MLP:the constructors;

130. CvANN_MLP::create:constructs MLP with the specifiedtopology;

131. CvANN_MLP::train:trains/updates MLP;

132. CvANN_MLP::predict:predicts responses for inputsamples;

133. CvANN_MLP::get_layer_count:returns the number fo layers inthe MLP;

134. CvANN_MLP::get_layer_size:returns numbers of neurons in eachlayer of the MLP;

135. CvANN_MLP::get_weights:returns neurons weights of theparticular layer;

136. CvKNearest::CvKNearest:default and training constructors;

137. CvKNearest::train:trains the model;

138. CvKNearest::find_nearest:finds the neighbors and predictsresponses for input vectors;

139. CvKNearest::get_max_k:returns the number of maximumneighbors that may be passed to the method CvKNearest::find_nearest();

140. CvKNearest::get_var_count:returns the number of usedfeatures(variables count);

141. CvKNearest::get_sample_count:returns the total number of trainsamples;

142. CvKNearest::is_regression:returns type of the problem(truefor regression and false for classification);

143. HoughLines(cvHoughLines):finds lines in a binary imageusing the standard Hough transform;

144. HoughLinesP:finds line segments in a binaryimage using the probabilistic Hough transform;

145. HoughCircles(cvHoughCircles):finds circles in a grayscale imageusing the Hough transform;

146. line(cvLine):draws a line segment connectingtwo points;

147. fitLine(cvFitLine):fits a line to a 2D or 3D pointset;

148. fitEllipse(cvFitEllipse2):fits an ellipse around a set of 2Dpoints;

149. ellipse(cvEllipse、cvEllipseBox):draws a simple or thick ellipticarc or fills an ellipse sector;

150. boundingRect(cvBoundingRect):calculatesthe up-right bounding rectangle of a point set;

151. rectangle(cvRectangle):draws a simple, thick, or filledup-right rectangle;

152. minEnclosingCircle(cvMinEnclosingCircle):finds acircle of the minimum area enclosing a 2D point set;

153. circle(cvCircle):draw a circle;

154. fillPoly:fills the area bounded by one ormore polygons;

155. approxPolyDP(cvApproxPoly):approximates a polygonal curve(s)with the specified precision;

156. pointPolygonTest(cvPointPolygonTest):performs a point-in-contour test(判断点在多边形中的位置);

157. convexHull(cvConvexHull2):finds the convex hull of a pointset;

158. transpose(cvTranspose):transposes a matrix;

159. invert(cvInvert):finds the inverse orpseudo-inverse of a matrix;

160. getStructuringElement(cvCreateStructuringElementEx):returns a structuring element ofthe specified size and shape for morphological operations;

161. absdiff(cvAbsDiff):calculates the per-elementabsolute difference between two arrays or between an array and a scalar;

162. subtract(cvSub):calculates the per-elementdifference between two arrays or array and a scalar;

163. multiply(cvMul):calculates the per-element scaledproduct fo two arrays;

164. divide(cvDiv):performs per-element division oftwo arrays or a scalar by an array;

165. bitwise_or(cvOr):calculates the per-elementbit-wise disjunction of two arrays or an array and a scalar;

166. bitwise_and(cvAnd):calculates the per-elementbit-wise conjunction of two arrays or an array and a scalar;

167. bitwise_not(cvNot):inverts every bit of an array;

168. bitwise_xor(cvXor):calculates the per-elementbit-wise “exclusive of” operation on two arrays or an array and a scalar;

169. erode(cvErode):erodes an image by using a specificstructuring element;

170. dilate(cvDilate):dilates an image by using aspecific structuring element;

171. min(cvMin):calculates per-element minimum oftwo arrays or an array and a scalar;

172. max(cvMax):calculates per-element maximum oftwo arrays or an array and a scalar;

173. add(cvAdd):calculates the per-element sum oftwo arrays or an array and a scalar;

174. addWeighted(cvAddWeighted):calculates the weighted sum of twoarrays;

175. scaleAdd(cvScaleAdd):calculats the sum of a scaledarray and another array;

176. saturate_cast():template function for accurateconversion from one primitive type to another;

177. sqrt(cvSqrt):calculates a square root of arrayelements;

178. pow(cvPow):raises every array element to apower;

179. abs:calculates an absolute value ofeach matrix element;

180. convertScaleAbs(cvConvertScaleAbs):scales, calculates absolutevalues, and converts the result to 8-bit;

181. cuberoot(cvCbrt):computes the cube root of anargument;

182. exp(cvExp):calculates the exponent of everyarray element;

183. log(cvLog):calculates the natural logarithmof every array element;

184. Canny(cvCanny):finds edges in an image using theCanny algorithm;

185. Sobel(cvSobel):calculates the first, second,third, or mixed image derivatives using an extended Sobel operator;

186. Scharr:Calculates the first x – or y –image derivative using Scharr operator(Scharr 滤波器);

187. Laplacian(cvLaplace):calculates the Laplacian of animage;

188. getDerivKernels:returns filter coefficients forcomputing spatial image derivatives;

189. contourArea(cvContourArea):calculates a contour area;

190. LUT(cvLUT):performs a look-up table transformof an array;

191. calcBackProject(cvCalcBackProject):calculates the back projection ofa histogram(反向投影);

192. arcLength(cvArcLength):calculates a contour perimeter ora curve length;

193. meanShift(cvMeanShift):finds an object on a backprojection image;

194. CamShift(cvCamShift):finds an object center, size, andorientation;

195. TermCriteria:template class definingtermination criteria for iterative algorithms;

196. createTrackbar(cvCreateTrackbar):creates a trackbar and attaches itto the specified window;

197. watershed(cvWatershed):performs a marker-based imagesegmentation using the watershed algorithm;

198. grabCut:runs the GrabCut algorithm;

199. compare(cvCmp):performs the per-elementcomparison of two arrays or an array and scalar value;

200. mean(cvAvg):calculates an average(mean) ofarray elements;

201. meanStdDev(cvAvgSdv):calculates a mean and standarddeviation of array elements;

202. cartToPolar(cvCartToPolar):calculates the magnitude and angleof 2D vectors;

203. moments(cvMoments):calculates all of the moments upto the third order of a polygon or rasterized shape;

204. matchShapes(cvMatchShapes):compares two shapes;

205. cornerHarris(cvCornerHarris):Harris edge detector;

206. goodFeaturesToTrack(cvGoodFeaturesToTrack):determines strong corners on an image;

207. classFeatureDetector:abstract base class for 2D imagefeature detectors;

208. classFastFeatureDetector:wrapping class for featuredetection using the FAST() method;

209. classSURF(SurfFeatureDetector、SurfDescriptorExtractor):extracting Speeded Up Robust Featuresfrom an image;

210. classSIFT(SiftFeatureDetector):extracting keypoints and computingdescriptors using the Scale Invariant Feature Transform(SIFT) algorithm;

211. SURF::operator(cvExtractSURF):detects keypoints and computesSURF descriptors for them;

212. drawKeypoints:draw keypoints;

213. drawMatches:draws the found matches ofkeypoints from two images;

214. classDescriptorMatcher:abstract base class for matchingkeypoint descriptors. It has two groups of match methods,for matchingdescriptors of an image with another image or with an image set;

215. findChessboardCorners(cvFindChessboardCorners):finds the positions of internalcorners of the chessboard;

216. drawChessboardCorners(cvDrawChessboardCorners):renders the detected chessboardcorners;

217. calibrateCamera(cvCalibrateCamera2):finds the camera intrinsic andextrinsic parameters from several view of a calibration pattern;

218. initUndistortRectifyMap(cvInitUndistortMap、cvInitUndistortRectifyMap):computes the undistortion andrectification transformation map;

219. remap(cvRemap):applies a generic geometricaltransformation to an image;

220. calibrationMatrixValues:computes useful cameracharacteristics from the camera matrix;

221. findFundamentalMat(cvFindFundamentalMat):calculates a fundamental matrixfrom the corresponding points in two images;

222. computeCorrespondEpilines(cvComputeCorrespondEpilines):for points in an image of a stereopair, computes the corresponding epilines in the other image;

223. findHomography(cvFindHomography):finds a perspective transformationbetween two planes;

224. warpPerspective(cvWarpPerspective):applies a perspectivetransformation to an image;

225. getPerspectiveTransform(cvGetPerspectiveTransform):calculates a perspective transformfrom four pairs of the corresponding points;

226. cornerSubPix(cvFindCornerSubPix):refines the corner locations;

227. calcOpticalFlowPyrLK(cvCalcOpticalFlowPyrLK):calculates an optical flow for asparse feature set using the iterative Lucas-Kanade method with pyramids;

228. swap:swaps two matrices;

229. accumulateWeighted(cvRunningAvg):updates a running average;

230. classBackgroundSubtractorMOG:gaussian mixture-basedbackground/foreground segmentation algorithm;

231. randu:generates a singleuniformly-distributed(均匀分布) random number or an array ofrandom numbers;

232. randn:fills the array with normallydistributed(正态分布) random numbers;

233. getTickCount:returns the number of ticks;

234. getTickFrequency:returns the number of ticks persecond(使用getTickCount和getTickFrequency两个函数可以计算执行某个算法所用时间);

235. CV_Assert:checks a condition at runtime andthrows exception if it fails;

236. saturate_cast:template function for accurateconversion from one primitive type to another;

237. classRNG:random number generator;

238. RNG::next:returns the next random number;

239. RNG::operatorT:returns the next random number ofthe specified type;

240. RNG::operator():returns the next random number;

241. RNG::uniform:returns the next random numbersampled from the uniform distribution;

242. RNG::gaussian:returns the next random numbersampled from the Gaussian distribution;

243. RNG::fill:fills arrays with random numbers;

244. getOptimalDFTSize(cvGetOptimalDFTSize):returns the optimal DFT size for agiven vector size;

245. copyMakeBorder(cvCopyMakeBorder):forms a border around an image;

246. dft(cvDFT):performs a forward or inverseDiscrete Fourier transform of a 1D or 2D floating-point array;

247. magnitude:calculates the magnitude(幅度) of 2D vectors;

248. classFileStorage:XML/YAML file storage class thanencapsulates all the information necessary for writing or reading data to/froma file;

249. FileStorage::open:open a file;

250. FileStorage::isOpened:checks whether the file is opened;

251. FileStorage::release:closes the file and releases allthe memory buffers;

252. FileStorage::releaseAndGetString:closes the file and releases allthe memory buffers;

253. FileStorage::getFirstTopLevelNode:returns the first element of thetop-level mapping;

254. FileStorage::root:returns the top-level mapping;

255. FileStorage::operator[]:returns the specified element ofthe top-level mapping;

256. FileStorage::operator*:returns the obsolete C FileStorage structure;

257. FileStorage::writeRaw:writes multiple numbers;

258. FileStorage::writeObj:writes the registered C structure(CvMat、CvMatND、CvSeq);

259. FileStorage::getDefaultObjectName:returns the normalized object name for thespecified name of a file;

260. getAffineTransform(cvGetAffineTransform):calculates an affine transformfrom three pairs of the corresponding points;

261. getRotationMatrix2D(cv2DRotationmatrix):calculates an affine matrix of 2Drotation;

262. warpAffine(cvWarpAffine):applies an affine transformationto an image;

263. matchTemplate(cvMatchTemplate):compares a template against overlapped imageregions;

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值