- 博客(31)
- 收藏
- 关注
原创 读论文:Patch损失:单图像超分辨率的通用多尺度感知损失
常规SISR损失:生成图像(SR)和地面真实图像(HR)之间的距离;patch损失:采用一批 SR-HR 对并返回它们的多尺度 patch 相似性距离;定义:patch损失需要在图像级别和特征级别进行多尺度监督,以充分利用高分辨率图像的潜在信息。使用大小为p×pp \times pp×p的滑动窗口将图像I∈Rh×w×cI∈Rh×w×c裁剪为n个图像块Ip∈Rp×p×cIp∈Rp×p×c,其中p是图像块的边长,n⌊h−。
2024-04-15 09:48:59 826 1
原创 读论文:使用模型知识引导的深度学习模型进行热带气旋强度预测
本文开发了一种深度学习(DL)模型,用于预测西北太平洋热带气旋(TC)强度。运用了历史信息、卫星红外图像IR、风、海面的u,v,w分量以及温度作为输入。并开发了TCIF-fusion模型,其中设计了两个特殊分支来学习多因素信息来预测24小时TC强度。并且使用了热图来增强输入集。实验结果表明,本文的方法和其他方法相比有着最优的效果。Index Term——tropical cyclone intensity forecast, deep learning, model knowledge热带气旋TC是一种极其
2024-03-06 10:39:34 1187
原创 读论文:使用生成对抗网络缩小随时间演化的大气场的随机超分辨率
GAN所实现的超分辨率SR任务和大气科学中的降尺度很像。而条件GAN(cGAN)则为给定输入生成解决方法集合的能力使其自然地适合随机降尺度,但在超分辨率应用中通常不考虑GAN的随机性。本文引入了一个训练的、随机的SR-GAN,它可以为由同一场的低分辨率图像序列组成的输入生成随时间变化的高分辨率大气场集合。并且使用了相关数据集来测试GAN,通过实验验证了其性能优越。关键词——Atmosphere, clouds, image processing, meteorological radar, neural n
2024-02-26 16:08:06 1044
原创 读论文:研究基于变压器的空间缩小模型并纠正近地表温度和风速预测的偏差
基于数值天气预报(NWP)模型的高分辨率和准确预测近地表天气参数对于许多下游和实际应用至关重要,但是传统的降尺度方法都无法从现有的数据中推导出高分辨率的数据。本文Index Term——downscaling, transformer, CNN, Uformer近地表天气变量的准确预测对于研究和工业中的各种应用至关重要。而随着科技的不断进步,许多全球数据天气预报(NWP)模型都是实时运行的,并且预测也越来越精准。但是,有许多应用(如太阳能和风能资源评估/预测)需要更精细的尺度,特别是在复杂地形中。这就是降尺
2023-11-01 16:31:56 309
原创 读论文:STKD :从同步教学中提炼知识以实现高效的模型压缩
现有的KD方法在训练过程中只提取了最后一层的有限知识,而忽略了中间层的特征。为此,本文倾向于提取中底层的特征,再利用两位教师来传递更全面、多层次的知识,来对学生产生较强的监督作用。动机:当老师再教授某种知识时,学生不仅局限于当前的课堂知识,还要会借鉴和参考以前的知识。这也就意味着要同时应用线上KD和线下KD;本文的框架如下图所示:先采用后向师生对,以相互学习的方式交互,生成中级知识和对应的软化对数来作为高级知识。然后应用前向老师执行标准KD损失,以提供包含有用信息的软目标。
2023-07-24 14:28:07 392
原创 读论文:基于深度学习技术的卫星图像热带气旋中心识别
准确识别 TC 的关键参数是大多数 TC 相关研究和实践的先决条件。中心位置是TC的基本参数之一。然而,比较不同气象机构发布的TC最佳路径数据,通常会发现不同数据源之间该参数存在明显差异。对六种深度学习模型进行了分析和比较,其中YOLOv4模型性能最优。此外,文章还进一步研究了影响YOLOv4模型的因素并在多个TC位置识别和单个TC跟踪中的应用。结果表明,它识别多个 TC 位置的概率超过 99%,并且对于单个 TC 跟踪也表现良好。Index Term——deep learning, identificat
2023-05-05 19:28:17 645
原创 读论文:Segment Anything
本文介绍了Segment Anything (SA) 项目,一种用于图像分割的新任务、模型和数据集:该项目使用了高效模型来构建目前最大的分割数据集;而模型被设计和训练为可提示的,因此它可以将零样本转移到新的图像分布和任务中。通过实验发现其零样本性能十分出色。在网络规模数据集上预训练的大型语言模型正在通过强大的零样本和少样本泛化彻底改变 NLP,而这些模型都可以泛化到一些从未见过的数据集上。此功能通常通过提示工程实现,而且其性能有时能与那些经过调参的模型相差不大。本文的目标就是:建立一个图像分割的基础模型——
2023-04-17 20:19:06 401
原创 读论文:MoDeRNN: 追求细粒度运动细节的时空预测学习
时空预测学习(ST-PL)旨在通过有限的观察序列预测后续帧,它在现实世界中有广泛的应用。但这也是一项具有挑战性的任务:学习有代表性的时空特征进行预测并非一件易事;连续帧之间的混乱不确定性也使得问题变得困难。本文通过加强以前的背景和当前状态之间的对应关系解决上述问题。研发人员设计了Detail Context Block(DCB)来提取细节,并改善上层状态与当前状态之间的独立关联性。并将其与ConvLSTM继承,再引入到运动细节RNN(MoDeRNN)以达到最优表现。从几个经典数据集上的表现结果可得:该模型是
2023-03-11 11:09:45 305
原创 读论文:PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs
通过PredRNN来捕进一步实现时空预测
2023-02-19 16:53:41 717
原创 读论文:A novel framework for spatio‑temporal prediction of environmental data using deep learning
提出了一种新的时间预测框架
2023-01-28 17:37:09 237
原创 读论文:A Novel Graph-Based Trajectory Predictor With Pseudo-Oracle
一种新型的行人轨迹预测方法
2022-12-16 15:07:13 588
原创 读论文:深度压缩:用剪枝、训练有素的量化和胡夫曼编码压缩深度神经网络
通过深度压缩技术来对模型进行压缩,从而使其能够在一些硬件不太行的设备上进行深度学习。
2022-11-24 16:01:40 528
原创 读论文:Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
扩展LSTM并将其运用到天气预测上
2022-10-24 23:08:35 1729
原创 读论文:Convective precipitation nowcasting using U-Net Model
使用U-Net模型来提供更加详细的即时天气预报
2022-10-18 09:55:26 1306
原创 读论文:Self-Attention ConvLSTM for Spatiotemporal Prediction
在卷积LSTM中嵌入SAM来提升其能力
2022-10-01 22:43:44 1789 2
原创 读论文:Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network
运用CNN技术来进行台风预测
2022-09-24 13:35:07 813 1
原创 读论文:基于自监督知识的无监督新集域适应学习
面对真实环境中各种复杂的情况,提出了基于自监督知识的无监督新集域适应(SUNDA)方法迁移源域的样本对比知识
2022-09-01 09:50:24 2547
原创 读论文:数据驱动和知识感知可解释人工智能综述 A Survey of Data-Driven and Knowledge-Aware eXplainable AI
XAI的发展现状综述
2022-07-14 10:02:20 1871
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人