读论文:研究基于变压器的空间缩小模型并纠正近地表温度和风速预测的偏差

标题: Investigating transformer-based models for spatial downscaling and correcting biases of near-surface temperature and wind speed forecast
作者: Xiaohui Zhong Fei Du Lei Chen Zhibin Wang Hao Li
原文地址:https://doi.org/10.1002/qj.4596


Abstract

基于数值天气预报(NWP)模型的高分辨率和准确预测近地表天气参数对于许多下游和实际应用至关重要,但是传统的降尺度方法都无法从现有的数据中推导出高分辨率的数据。本文

Index Term——downscaling, transformer, CNN, Uformer


Introduction

近地表天气变量的准确预测对于研究和工业中的各种应用至关重要。而随着科技的不断进步,许多全球数据天气预报(NWP)模型都是实时运行的,并且预测也越来越精准。

但是,有许多应用(如太阳能和风能资源评估/预测)需要更精细的尺度,特别是在复杂地形中。这就是降尺度模型的任务:

  • 目标:从粗分辨率 NWP 模型输出中获取高分辨率细节;
  • 传统方法
  1. 动态降尺度:该方法使用由低分辨率边界条件驱动的高分辨率区域模型来解释精细网格尺度强迫,例如更复杂的地形特征。
    优点:它提供了大量物理上一致的数据,并且可以应用于任何区域
    缺点:需要大量的计算和时间资源,并且其精度受到限制,因为它对区域模型内的边界条件和误差敏感;
  2. 统计降尺度:这是一种数据驱动的方法,它从大量历史数据中学习低分辨率模型变量(预测变量)和观测数据之间的统计关系。
    优点:计算效率高并且能够纠正模型偏差;
    缺点:由于数学形式化的简化和统计平稳性的假设,统计降尺度可能会退化,甚至产生不合理的结果;

而这计算机视觉中的图像超分辨率(SR)问题旨在从低分辨率图像中检索高分辨率图像,这在概念上类似于降尺度。而DL方法相对于动态降尺度更容易构建平且计算效率更高。但是与传统方法相比,只有CNN被用于天气/气候降尺度。

有许多基于CNN的改进模型也随之而出:

  • RCAN:用于图像超分辨率的非常深剩余通道注意网络,利用通道注意机制提高深度网络的表征能力,从低分辨率输入中提取更复杂的特征;

但是基于CNN的方法由于无法捕获远程依赖关系而限制了其发挥。而基于Transformer的模型就是为序列建模而设计的,并且它善于捕获数据中的远程依赖关系。但是实现图像超分辨率SRTransformer仍有一些挑战:

  • 首先,Transformer使用全局自注意力,由于其相对于图像大小二次计算复杂,因此不适合高分辨率特征图;
  • 其次,Transformer块无法捕获附近像素之间的局部依赖关系,而这对于图像SR任务十分重要;

为此,提出了基于Swintransformer 的高效SwinIR模型,该模型结合了 CNN 和 Transformer 的优点,可以处理大尺寸图像,并通过移位窗口方案对远程依赖性进行建模。且通过实验证明了Transformer 模型相对于线性回归(LR)模型和前馈全连接神经网络的优越性能,但是,他们使用的基于站的观测数据不适用于空间降尺度

  • UNet:当高分辨率和低分辨率高程数据作为输入时,该模型对未见域的空间泛化能力得到提高;

考虑到地形数据对模型性能的重要性,我们建议添加地形特征提取分支,从空间分辨率为0.01°的高分辨率地形数据中提取不同分辨率的特征。此外,我们设计了多尺度特征融合模块来同时融合不同尺度的信息。结果,性能进一步提高


贡献

  1. SwinIR 和 Uformer 等基于变压器的模型首次应用于近地表天气预报的空间缩小。并通过实验证明了其性能优于基于CNN的模型;
  2. 本文使用数值天气预报数据作为输入,网格观测数据作为目标,这与实际应用场景相同,并且比高分辨率和低分辨率数据来自同一来源时更具挑战性;
  3. 本文提出了地形特征提取模块和多尺度特征融合模块,进一步提高了Uformer的降尺度性能;

综述

方法

网络结构

  • UNet:该模型由一个下采样路径和一个上采样路径组成。下采样路径包括四个重复的模块,其中包含一系列2个3×3卷积层,批量归一化(BN)层和修正线性单元(ReLU)(Conv-BN-ReLU),然后是一个步幅为2的2×2最大池化层。在每个下采样模块之后,空间分辨率减小了2倍,而通道数加倍。上采样路径通过使用步幅为2的2×2转置卷积层和两个3×3 Conv-BN-ReLU层重复上采样特征映射——在上采样模块之后,空间分辨率增加了一倍,通道数减半
  • RCAN:该模型使用了残差中的残差(RIR)结构,可以创建深度且有效的可训练网络。该结构包括许多具有长条约连接的残差组,这些组会优先考虑低分辨率特征的更多信息成分,而每个残差组内都有多个具有短跳跃连接的基本残差块;
  • SwinIR:该模型实现了由多个残差 Swin 变压器块(RSTB)组成的 RIR 结构,并使用了多头注意力以及具有两个全连接层的多层感知器;
  • Uformer:该模型使用了局部增强窗口 (LeWin) 转换器块替换了 UNet 中的基本卷积块,并将深度卷积块添加到 Swin 转换器块中的前馈网络 (FFN) 中,来更好地部或局部依赖性。LeWin Transformer将输入特征分割到局部窗口中,并将注意力分别应用于每个窗口,还使用了可学习的卷积滤波器其来放大注意力机制,从而捕获更详细的空间信息。本文的模型如下图所示:

基于 Uformer 的降尺度网络的架构。网络的输入是降尺度域中低分辨率数值天气预报数据的子集,输出是预测的高分辨率数据。红色和蓝色虚线表示地形特征提取模块和多尺度特征融合模块。
H和W分别代表东西向和南北向网格点的数量,本文中取值为64和64。 2D 卷积层(图中的 Conv2D)k3n64s1 的概念表示滤波器大小为 3 x 3,输出通道数为 64,步长为 1。


地形特征提取模块

地形在影响近地表天气模式方面起着重要作用,但是以往的模型都是将这一数据作为附加输入。而本文在模型中添加了地形特征提取模块从空间分辨率为0.01°的高分辨率地形数据中提取不同尺度的特征,如下图所示:
在这里插入图片描述

原始高分辨率地形数据首先通过一个下采样器进行处理,来缩小地形特征的大小。然后进行两个下采样步骤以提取两种更粗糙尺度的特征,如上一幅图中红色虚线所示,地形特征提取被添加到网络的下采样路径中。


多尺度特征融合模块

多尺度特征融合被广泛应用来缓解许多超分辨率算法中细节丢失的问题。而在本文的问题中,天气参数的结构模型通常具有不同的空间尺度,通过该模块来充分利用低分辨率输入数据的多尺度特征。如图1所示,Uformer网络中每一层的多尺度特征对应于特定的尺度(见图1中的蓝色虚线),并且它们具有不同的通道数和大小。

先,利用3×3的卷积内核,步长为1,输出通道数为64(图1中的蓝色k3n64s1和Conv2D ),以便多尺度特性(f1、f2和f 3)具有相同的通道数。接下来,实施双线性插值以将中间特征上采样到与输出特征f4相同的大小。然后,将所有多尺度特征直接与网络的输出特征叠加,得到融合后的特征图。最后,将融合后的特征图放入两个卷积层中,这两个卷积层具有相同大小(3×3)的核,输出通道编号为64和2,以生成最终输出。


实验

数据集

本文的研究区域选在了内蒙古东部,其范围为:北纬39.6°至46°,东经111.6°至118°。并使用由中国气象局开发的CLDAS数据集的 T 2 m T_{2m} T2m S 10 m S_{10m} S10m数据作为高分辨率地面实况。


数据预处理

原始CLDAS数据覆盖整个中国及其周边地区,因此它是指定降尺度域的子集。2020年1月1日至2021年5月31日的CLDAS数据用于模型训练,2021年6月1日至2021年9月30日的数据用于测试。训练和测试数据集由10183和2358个样本组成。使用训练数据集中每个变量的平均值和标准差来执行输入和输出变量的z得分归一化。


实验设置

所有模型都用相同的超参数设置来训练。通过模型使得分辨率提高十倍。使用Charbonnies损失函数:

其中y和 y ^ \hat{y} y^分别是GT和模型输出高分辨率数据,而常数 ϵ \epsilon ϵ设置为 1 0 − 3 10^{-3} 103

为了评估每个模型的性能,使用了峰值信噪比PSNR、结构相似性指数SSIM、均方误差MSE和平均绝对值误差MAE等指标,并且本文还计算了用于评估的LPIPS。

LPIPS的值是通过计算预训练网络中深度特征之间的距离获得的,其值越低表示性能越好,LPIPS分数范围从0到1。如果一个模型的PSNR和SSIM值较高,MSE和MAE值较低,则表明性能较好。


实验结果

总性能

下面两张表分别展示了所有基于DL的降尺度模型的所有测试数据中 T 2 m T_{2m} T2m S 10 m S_{10m} S10m每个指标的平均值:

T2m 不同降尺度模型在测试数据上的比较。
尽管模型参数数量最多,但 UNet 模型在 T2m 方面的性能最差,在 W S10m 方面比 RCAN 的性能稍好。两个基于 Transformer 的模型 SwinIR 和 Uformer 的性能优于基于 CNN 的 UNet 和 RCAN 模型。 Uformer模型在所有模型中实现了最高的精度,其基于VGGNet和AlexNet(LPIPSV GG和LPIPSAl exN et)计算的MAE、MSE和LPIPS最小,并且SSIM和PSNR值最高。

W S10m 不同降尺度模型在测试数据上的比较

而下面两张图则是显示了初始化的 25 小时 ECMWF 预报的观测和缩小的 T2m 和 W S10m 快照,属于测试数据。

T2m的快照示例与各个模型的缩小结果的比较,以及缩小结果与 CLDAS W S10 之间的绝对差异

WS10m的快照示例与各个模型的缩小结果的比较,以及缩小结果与 CLDAS W S10 之间的绝对差异

  • 实验结果表明:虽然 RCAN 模型可以生成细粒度的细节,但基于 CNN 的模型的输出 T2m 和 W S10m 对东南部都有更显着的偏差(116 到 118分别为研究区的东经°E、北纬40°~41°)和西北部(东经111.6°~114°、北纬42°~44°)。这两个基于变压器的模型能够重建精细尺度的空间变异性,缩小结果与观察结果之间的绝对差异较小;

地形特征提取和多尺度特征融合模块的有效性

就是通过消融实验来体现这两个模块的重要性。实验结果如下所示:
请添加图片描述

不同配置的 Uformer 与 CLDAS T2m(第一行)和 W S10m(第二行)在 2021 年 8 月 5 日 UTC 时间 12 点初始化的 13 小时 ECMWF 预报的缩小结果之间绝对差异快照示例的比较、
从实验结果中可以看出来,Uformer + MultiScale 比 Uformer + HGT 具有更高的性能增益,但代价是模型参数数量增加较小。此外,Uformer + HGT + MultiScale 的误差最小,并且优于所有其他模型。
Uformer + HGT + MultiScale 与观测值的差异明显更小。这表明同时使用地形特征提取和多尺度特征融合模块有助于解决细节问题。


总结

本文应用基于Transformer的模型来对内蒙古东部的两个近地表气象变量进行降尺度,通过实验结果发现基于 Transformer 的模型优于基于 CNN 的模型,其中 Uformer 模型是最准确的模型。

此外,由于地形数据在降尺度问题中的重要性,特别是在复杂地形中,本文提出了地形特征提取模块,从高分辨率地形数据中提取不同尺度的特征,并结合使用多尺度的特征融合模块来进一步提升模型性能。


未来展望

作者通过在国内其他区域使用该模型,可以看得出来性能略有退化。因此为了提高其泛用性,需要使用覆盖全国的数据来训练模型。此外,考虑到数据中的大量像素覆盖了整个国家,需要将数据划分为更小的、重叠的子集。

本文所使用的Transformer架构只能产生确定性预测。而其他研究以及表明,GAN可以生成概率预测,从而提升准确性并量化不确定性。因此,将GAN与Transformer 模型相结合可以生成预测集合,这可能会进一步提高模型性能

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值