读论文:使用模型知识引导的深度学习模型进行热带气旋强度预测

标题: Tropical cyclone intensity forecasting using model knowledge guided deep learning model
作者: Chong Wang, Xiaofeng Li and Gang Zheng
原文地址:https://doi.org/10.1088/1748-9326/ad1bde


Abstract

本文开发了一种深度学习(DL)模型,用于预测西北太平洋热带气旋(TC)强度。运用了历史信息、卫星红外图像IR、风、海面的u,v,w分量以及温度作为输入。并开发了TCIF-fusion模型,其中设计了两个特殊分支来学习多因素信息来预测24小时TC强度。并且使用了热图来增强输入集。实验结果表明,本文的方法和其他方法相比有着最优的效果。

Index Term——tropical cyclone intensity forecast, deep learning, model knowledge


Introduction

热带气旋TC是一种极其强大的天气现象,可能对沿海地区造成灾难性破坏。为此,精确的TC强度预报(TCIF)显得十分关键。

  • 传统预报方法
    (1) 动态预报模型:利用一组数学方程来表示控制大气运动和热力学的基本原理。但是其在TC强度方面的表现不是特别优秀;
    (2) 统计模型;依靠历史观测数据来建立数学模型,捕捉各种气象参数与热带气旋强度演变之间的关系。优点在于其简单性和易于实施,特别是当实时数据有限时。然而,这些模型受到历史模式将继续存在的假设的限制;

近年来,DL在TCIF领域表现出了高精度和高效率,就比如多层感知机、统计飓风强度预测方案SHIPS、空间注意力融合网络SAF-NET等。但是它们仍存在着三个关键问题:

  1. 卫星红外(IR)并未得到使用;
  2. TC过程本质上是复杂的,多个输入因素之间的相互作用错综复杂。可用的网络通常为每个因素单独提取特征或使用简单的串联,导致学习这些因素之间相互作用的能力有限;
  3. 在三维大气场数据中,除了与TC强度密切相关的信号外,还有许多因素干扰模型的预报,而这些因素在以前的建模过程中被忽视了;

为此,本文的目标就是获得准确的 24 小时 TCIF。


贡献

  1. 它证明了利用卫星红外图像对热带气旋强度预报性能的积极影响;
  2. 它针对不同因素设计了特征融合模块,增强了深度学习模型学习和表示它们之间相互作用的能力;
  3. 利用深度学习模型知识(DL model knowledge, MK)指导建模过程,使模型更加关注与TC强度演化密切相关的信号,从而提高了模型性能和训练效率。

综述

Method

TCIF模型架构设计

  • 老办法:使用多分支网络结构来独立提取每个因子的特征并将它们连接到全连接层,如下图的蓝色箭头和块所示:
    在这里插入图片描述
    而块的结构如下所示:
    在这里插入图片描述

  • 改进点

  1. 在24小时TCIF合并模型中添加特征融合分支(由主论文图1中的蓝色和绿色箭头和块组成);
  2. 在 24 小时 TCIF 融合模型中添加了一个额外的输入分支(由主论文图 1 中的蓝色、绿色和灰色箭头和块组成)
  • 输出:24小时TC强度;

MK引导的训练策略设计

为了增加可解释性,本文使用了热图来表明输入特征与模型输出的相关性和重要性,这被称作模型知识MK。
在这里插入图片描述

图2,MK引导生成新输入数据的过程。 SST中的深蓝色点代表处理后的NaN值,详细信息请参阅补充信息部分S1。
为风俗较高区域分配较高权重,而风速较低和不重要区域分配较低权重。
具体来说,U和V热图中权重较高的区域位于TC中心附近,强风速占主导地位。
在 TC 眼内及其周边区域均观察到 W 热图中显着的权重区域。海温热图密切反映了真实的海温分布。
此外,IR 热图中表现出较高权重的区域对应于 TC 的眼睛及其螺旋带。
通过将原始数据与热图的绝对值按元素相乘来生成新的数据集

  • 本文所提方法的步骤
  1. 训练TCIF融合模型,表示为TCIF初始模型;
  2. 利用 Grad-CAM 生成训练、验证和测试数据集的热图;
  3. 通过将热图的绝对值与相应的原始输入数据点逐元素相乘来创建新的输入数据;
  4. 用增强数据集训练新的TCIF融合模型,从而获得以获取的MK为指导的TCIF融合模型;

数据

  • IR图像:来自网格卫星数据 (GridSat-B1),这是在 0.07° 纬度等角网格上进行网格化的国际卫星云气候项目 B1 数据。通过选择每个网格点的最低点观测值来合并卫星。本文使用了11μm波段图像;
  • ERA5再分析数据:包括风和海表温度的U、V 和 W分量。为了表示 TC 的垂直结构,选择了 200、500、850 和 1000 hPa 四个等压线水平。数据采集​​时间跨度为1979年至2021年,空间分辨率为1°,时间分辨率为6 h;
  • TC Best Track数据集:该数据集中每 3 或 6 小时记录一次 TC 的轨迹和强度。 TC数据收集于1979年至2021年。对 1979 年至 2019 年的数据进行了分区,其中 90% 分配用于训练,10% 保留用于验证。采用2020年和2021年的数据作为独立测试数据;

TCIF模型输入数据的设计

许多老方法都没有纳入IR。 U、V、W、SST 和 IR 成为 TCIF 模型的输入因子。为此,本文的输入因此如下所示:
在这里插入图片描述

当输入因子为U、V、W和HIS时(附表1),模型仅包含U、V、W和HIS分支(补充图 4,由灰色箭头组成)。然而,随着输入 IR 的添加,模型集成了 IR 分支(补充图 4,由灰色和蓝色箭头组成)


此外,数据序列的排列在影响卷积核的计算方法方面起着关键作用。通过研究发现“x-y-t-z”布置所得到的误差最低。


实验结果

海温和红外图像在 TCIF 中的作用

研究表明,红外数据可以描述TC形态和对流活动,通常用于快速增强预报。然而,基于dl的TC强度预测方法尚未纳入IR。本节比较了不同输入下mk引导的tcif融合模型的性能,如下所示:
在这里插入图片描述
在这里插入图片描述

基本模型采用HIS、U、V和W作为输入,同时分别引入SST和IR输入。表1和图3(a)描述了该模型对2020年至2021年测试数据的24小时预测的平均绝对误差。
当输入到 HIS、U、V 和 W 时,MKguided TCIF-1 模型记录的误差为 3.8 m s−1 。
然而,通过整合海表温度和红外输入,该模型的预报误差分别显着降低至 3.74 m s−1(MK 引导的 TCIF-2 模型)和 3.69 m s−1(MK 引导的 TCIF-3 模型)。
MK引导的TCIF-4模型结合了HIS、U、V、W、IR和SST输入,进一步减少了误差,误差为3.56 m s−1,性能提高了8.0%(与MK 引导的 TCIF-1)。

以上结果表明:除了与强度直接相关的风速分量之外,结合海表温度和红外输入可以大大提高模型在预测TC强度方面的性能。


MK的作用

原始输入数据包含超出与 TC 强度相关信息之外的无关“噪声”,这可能会阻碍模型的学习过程。引入MK可以有效降低“噪声”对模型的影响,实验结果如下所示:

结果强调,没有 MK 引导的 TCIF 融合模型在 40 个训练周期后收敛,而 MK 引导的 TCIF 融合模型仅在 20 个训练周期内实现收敛,显示出更低的损失值。

而这两幅图则是在测试数据集上进行MK的消融实验:

左边那个没有MK,右边那个有MK。
MK 引导的 TCIF 融合模型表现出更高的相关性 (0.92) 和更低的 MAE

图 3© 和 (d) 表明,纳入 MK 可以减轻模型低估高风速样本的倾向。结果强烈表明,合并 MK 有助于增强模型性能。


结果分析

和各种方法的对比如下所示:

结果表明,基于 DL 的方法和我们提出的方法都比传统方法好 4%–2​​2%,强调了 DL 在 TCIF 中的巨大潜力。
与其他基于深度学习的方法相比,本文提出的方法(1)添加卫星图像作为输入,(2)优先考虑因素之间相互作用的学习,(3)采用模型引导知识进行建模。
MK引导的TCIF-fusion模型的性能比其他深度学习方法提高了4%以上,证明该方法是先进的

此外,还对不同TC强度下的预测结果进行了比较,如下图所示:

图 4(a) 描绘了一个条形图,说明了不同强度级别的预测误差。我们模型的预测误差随着 TC 强度的增加而增加。
在图 4(b) 中,观测和模式预报中都显示了不同的 TC 强度发生频率;
模型倾向于对热带风暴(TS)和SuperTY强度的TC进行较少的预测,而对热带低气压(TD)、强热带风暴(STS)的预测较多和台风 (TY) 强度;
图 4(b) 中所示的频率分布意味着我们的模型可能会将 TS (17.2–24.4 m s−1 ) TC 错误分类为 TD,将 SuperTY (>51.0 m s−1 ) TC 错误分类为 STS (41.5–50.9 m s−1 ) 或 TY 。而这主要是因为不同强度的TC样本量不同,这凸显了深度学习方法的局限性;

以上总总实验结果都表明本文所提出的MK引导的TCIF-fusion模型可以提供准确的24h TCIF。


总结

本文验证了海表温度和红外图像在增强 TCIF 方面的有利作用。通过将海表温度和红外数据与大气因素合并,从而提高了模型的性能。为了有效融合多种数据,本文引入了一种明确考虑因素间依赖性的模型设计来增强模型捕获TC强度详细演变的能力。此外,在建模过程中集成模型引导知识可以减轻环境“噪声”的干扰,从而提高学习速度和模型性能。并且通过实验验证了模型的有效性。


未来展望

遗憾的是,与现有的基于深度学习的方法类似,这项研究依赖于缺乏可用于业务预测的再分析数据。开拓开发纯粹基于卫星图像的热带气旋预报模型是一项迫在眉睫的挑战。

此外,考虑到 TC 过程的复杂性和动态本质,将物理约束或先验知识集成到深度学习模型中是该领域未来研究的一种有前途的方法。

  • 21
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值