问题:
求两个数的最大公约数
解法一:
欧几里得辗转相除法:
f(x,y) = GCD(x,y), 取k = x / y, b = x % y,则:x = k*y + b;
如果一个数能整除x,y,则它也能整除b,y; 而且能整除b,y的数必能整除x,y,即x,y和b,y的公约数是相同的,其最大公约数也是相同的,即f(x,y) = f(y ,x % y) (x>=y>0)
递归算法:
#include<stdio.h>
//递归形式
int GCD(int a,int b)
{
if(b == 0){
return a;
}
else{
//a,b和b,a%b有相同的最大公约数
return GCD(b,a%b);
}
}
int main(){
int a,b;
scanf("%d %d",&a,&b);
printf("%d\n",GCD(a,b));
}
非递归算法:
int gcd1(int a,int b)
{
int temp;
while(b){
temp = a%b;
a = b;
b = temp;
}
return a;
}
解法二:
在解法一中我们用到了取模运算。在大整数中取模运算(涉及到除法运算)是非常高贵的开销。
我们想想避免用取模运算。
类似前面的分析,一个数能整除x,y则必能同时整除x - y,y。能同时整除x - y,y 则必能同时整除x,y。即x,y的公约数和x-y,y的公约数是一样的,其最大公约数也是一样的。
int gcd2(int a,int b)
{
if(a < b) //保证a,b都非负
return gcd2(b-a,a);
if(b == 0)
return a;
return gcd2(a - b,b);
}
此解法用减法而不是除法,这样迭代的次数比除法要多,当遇到f(10000000,1)的情况时这不是一个好方法。
解法三:
分析:
对于x,y,如果y = k * y1,x = k * x1,则f(y,x) = K*f(x1,y1);——注意这里的倍数k必须要!!
如果x = p * x1, 假设p是素数,且 y % p != 0 ,即y不能被p整除,则f(x,y) = f(x1,y).——比如m为公约数,代表m | x 且 m | y。当p为素数,且y中不包含p时,证明x1才能整除m。对于一个数,可以表示层素数的乘积 M = 2^X * 3^Y * 5 ^Z……
可以利用上面两点进行改进。因为2是素数,同时对于二进制表示的大整数而言可以很容易的将除以2和乘以2的算法转换为移位运算,从而避免大整数除法。
可以充分利用2进行分析:
若x,y都为偶数(2肯定是公约数),则f(x,y) = 2*f(x / 2,y / 2) = 2*f(x>>1,y>>1);
若x为偶数,y为奇数(2肯定不是公约数),则f(x,y) = f(x / 2, y / 2) = f(x>>1, y)
若x为奇数,y为偶数2肯定不是公约数),则f(x,y)= f(x, y / 2) = f(x, y>>1)
若x,y都为奇数(2肯定不是公约数),则f(x,y) = f(y, x-y) (x-y肯定为偶数) = f(y, (x-y)/2)
#include<stdio.h>
//判断奇偶性
int IsEvenOdd(int n){
if(n % 2 == 0){
return 1;
}
else{
return 0;
}
}
int GCD(int a,int b)
{
//如果a < b
if(a < b){
return GCD(b,a);
}
if(b == 0){
return a;
}
//若x,y都为偶数
if(IsEvenOdd(a) == 1 && IsEvenOdd(b) == 1){
return 2 * GCD(a>>1,b>>1);
}
//若x,y都为奇数
else if(IsEvenOdd(a) == 0 && IsEvenOdd(b) == 0){
return GCD(b,a-b);
}
//若x是偶数y是奇数
else if(IsEvenOdd(a) == 1 && IsEvenOdd(b) == 0){
return GCD(a>>1,b);
}
//若x是奇数y是偶数
else{
return GCD(a,b>>1);
}
}
int main(){
int a,b;
scanf("%d %d",&a,&b);
printf("%d\n",GCD(a,b));
}
这个算法的好处就是用移位操作来代替除法操作,大大节约时间。