【编程之美】2.7最大公约数问题


问题:

求两个数的最大公约数

解法一:

欧几里得辗转相除法:

f(x,y) = GCD(x,y), 取k = x / y, b = x % y,则:x = k*y + b;
如果一个数能整除x,y,则它也能整除b,y; 而且能整除b,y的数必能整除x,y,即x,y和b,y的公约数是相同的,其最大公约数也是相同的,即f(x,y) = f(y ,x % y) (x>=y>0)


比如:f(42,30) = f(30,12) = f(12,6) = f(6,0) = 6。

递归算法:

#include<stdio.h> 

//递归形式 
int GCD(int a,int b)
{ 
	if(b == 0){
		return a;
	}
	else{
		//a,b和b,a%b有相同的最大公约数
		return GCD(b,a%b);
	}

} 

int main(){
	int a,b;
	scanf("%d %d",&a,&b);
	printf("%d\n",GCD(a,b));
}

非递归算法:

int gcd1(int a,int b)
{
    int temp;
    while(b){
        temp = a%b;
        a = b;
        b = temp;
    }
    return a;
}


解法二:

在解法一中我们用到了取模运算。在大整数中取模运算(涉及到除法运算)是非常高贵的开销。

我们想想避免用取模运算。

类似前面的分析,一个数能整除x,y则必能同时整除x - y,y。能同时整除x - y,y 则必能同时整除x,y。即x,y的公约数和x-y,y的公约数是一样的,其最大公约数也是一样的。

int gcd2(int a,int b)
{
    if(a < b)   //保证a,b都非负
        return gcd2(b-a,a);
    if(b == 0)
        return a;
    return gcd2(a - b,b);
}

此解法用减法而不是除法,这样迭代的次数比除法要多,当遇到f(10000000,1)的情况时这不是一个好方法。


解法三:

分析:

对于x,y,如果y = k * y1,x = k * x1,则f(y,x) = K*f(x1,y1);——注意这里的倍数k必须要!!

如果x = p * x1, 假设p是素数,且 y % p != 0 ,即y不能被p整除,则f(x,y) = f(x1,y).——比如m为公约数,代表m | x 且 m | y。当p为素数,且y中不包含p时,证明x1才能整除m。对于一个数,可以表示层素数的乘积 M = 2^X * 3^Y * 5 ^Z……

可以利用上面两点进行改进。因为2是素数,同时对于二进制表示的大整数而言可以很容易的将除以2和乘以2的算法转换为移位运算,从而避免大整数除法。

可以充分利用2进行分析:
若x,y都为偶数(2肯定是公约数),则f(x,y) = 2*f(x / 2,y / 2) = 2*f(x>>1,y>>1);
若x为偶数,y为奇数(2肯定不是公约数),则f(x,y) = f(x / 2, y / 2) = f(x>>1, y)
若x为奇数,y为偶数2肯定不是公约数),则f(x,y)= f(x, y / 2) = f(x, y>>1)
若x,y都为奇数(2肯定不是公约数),则f(x,y) = f(y, x-y)    (x-y肯定为偶数) = f(y, (x-y)/2)


#include<stdio.h> 
//判断奇偶性
int IsEvenOdd(int n){
	if(n % 2 == 0){
		return 1;
	}
	else{
		return 0;
	}
}

int GCD(int a,int b)
{ 
	//如果a < b
	if(a < b){
		return GCD(b,a);
	}
	if(b == 0){
		return a;
	}
	//若x,y都为偶数
	if(IsEvenOdd(a) == 1 && IsEvenOdd(b) == 1){
		return 2 * GCD(a>>1,b>>1);
	}
	//若x,y都为奇数
	else if(IsEvenOdd(a) == 0 && IsEvenOdd(b) == 0){
		return GCD(b,a-b);
	}
	//若x是偶数y是奇数
	else if(IsEvenOdd(a) == 1 && IsEvenOdd(b) == 0){
		return GCD(a>>1,b);
	}
	//若x是奇数y是偶数
	else{
		return GCD(a,b>>1);
	}
} 

int main(){
	int a,b;
	scanf("%d %d",&a,&b);
	printf("%d\n",GCD(a,b));
}


这个算法的好处就是用移位操作来代替除法操作,大大节约时间。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值