pytorch 39 yolov5_obb的onnx部署及其优化

48 篇文章 204 订阅 ¥59.90 ¥99.00
本文详细介绍了如何将YOLOv5_obb模型导出为ONNX格式,包括模型导出、定义基本操作、Detect类的设计、模型测试及推理优化。在部署过程中,注意到模型不支持动态batchsize,需要对模型进行修改以适应需求。通过C++代码实现了推理过程,同时提出在模型内部完成类别和角度计算,以提高推理效率。
摘要由CSDN通过智能技术生成

进行部署要求配置opencv和onnxruntime环境,这里不累述。

1、模型导出

yolov5_obb项目的使用可以参考:https://hpg123.blog.csdn.net/article/details/129366477
下载yolov5s_csl_dotav1_best.pt,并执行以下命令,得到yolov5s_csl_dotav1_best.onnx

python export.py --weights ./yolov5s_csl_dotav1_best.pt --device cpu

将导出的模型yolov5s_csl_dotav1_best.onnx上传到https://netron.app/ , 点击输入节点可以发现模型的输入和输出情况如下,yolov5obb是一个多输出模型,其中output节点囊括了所有尺度的输出(这里需要注意output的shape为batchsize,girdnums,grid_pred)。
在这里插入图片描述

从中也可以发现模型不支持动态batchsize输入,可以参考 https://hpg123.blog.csdn.net/article/details/130115358?spm=

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值