kafka 批处理

本文介绍了在阿里云Kafka实例上进行批处理的配置与方法。使用批处理可以提高消费效率,通过设置`group-id`、`auto-offset-reset`等参数,一次性获取并处理100条消息,提升系统性能。
摘要由CSDN通过智能技术生成

一 环境:

1.kafka使用的是阿里云的消息队列kafka实例。

2.两台kafka消费服务器。

3.每天大概有50w次kafka发送消费。

--------------------------------------------------------------------------------

1.使用kafka批处理配置 factory.setBatchListener(true);

2.然后kafka的接受方法需要这么写:

	@KafkaListener(topics = "你的topic", containerFactory = "kafkaListenerContainerFactory", topicPartitions = {
				@TopicPartition(partitions = {"0","1"}, topic = "你的topic") })
	    public  void  message(List<ConsumerRecord<String, Object>> records,Acknowledgment ack){
                    if (!records.isEmpty()) {
			for (ConsumerRecord<String, Object> record : records) {
				if(null!=record&&record
要在 Spark 中进行批处理 Kafka,您可以使用 Spark Streaming 或 Spark SQL。以下是使用 Spark Streaming 的基本步骤: 1. 首先,您需要在 Spark Streaming 中创建一个 Kafka DStream。您可以使用 KafkaUtils.createStream() 方法创建一个 DStream。 2. 接下来,您需要定义一个 Kafka 主题和一个消费者组来消费消息。您可以使用 createStream() 方法的参数来定义主题和消费者组。 3. 然后,您需要指定 Spark Streaming 批处理的时间间隔。 4. 接下来,您可以使用 Spark Streaming 的 DStream API 来转换和操作 Kafka 数据流。 5. 最后,您需要启动 Spark Streaming 应用程序并等待它处理 Kafka 消息。 以下是一个简单的 Spark Streaming 应用程序,用于从 Kafka 主题中读取数据并将其打印到控制台: ```scala import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ val ssc = new StreamingContext(sparkConf, Seconds(10)) val kafkaParams = Map("metadata.broker.list" -> "localhost:9092") val topics = Set("mytopic") val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder]( ssc, kafkaParams, topics) stream.map(_._2).print() ssc.start() ssc.awaitTermination() ``` 在上面的代码中,我们使用 createDirectStream() 方法创建一个 Kafka DStream,并使用 map() 方法从 DStream 中提取消息的值,并使用 print() 方法将其打印到控制台。最后,我们启动 StreamingContext 并等待它处理 Kafka 消息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值