图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。在我们常用的几种用于边缘检测的算子中Laplace算子常常会产生双边界;而其他一些算子如Sobel算子又往往会形成不闭合区域。本文主要讨论了在边缘检测中,获取封闭边界区域的算法。
图象边缘检测的基本步骤
(1)滤波。边缘检测主要基于导数计算,但受噪声影响。但滤波器在降低噪声的同时也导致边缘强度的损失。
(2)增强。增强算法将邻域中灰度有显著变化的点突出显示。一般通过计算梯度幅值完成。
(3)检测。但在有些图象中梯度幅值较大的并不是边缘点。最简单的边缘检测是梯度幅值阈值判定。
(4)定位。精确确定边缘的位置。
边缘检测酸法的基本步骤
哈夫变换方法是利用图像得全局特性而对目标轮廓进行直接检测的方法,在已知区域形状的条件下,哈夫变换可以准确地捕获到目标的边界(连续的获不连续的),并最终以连续曲线的形式输出变换结果,该变换可以从强噪声环境中将已知形状的目标准确得分割提取出来。
哈夫变换的核心思想是: 点—线的对偶性(duality)。通过变换将图象从图像控件转换到参数空间,在图像空间中一条过点(x,y)的直线方程为y=px+q,通过代数变换可以转换为另一种形式p=-px+y,即参数空间中过点(p,q)的一条直线,如果在图像空间中保持直线的斜率和截距的不变,其在参数空间必定过点(p, q),这也就说明,在图像空间中共线的点对应参数空间共点的线. 哈夫变换就是根据上述点—线的对偶性把在图象空间中存在的直线检测问题转换为参数空间中存在的点检测问题,后者的处理要比前者简单易行得多,只需简单地累加统计即可实现对边缘的检测.
哈夫变换不仅能检测直线等一阶曲线的目标,对于园、椭圆等高阶的曲线都可以检测出来。