關鍵詞 邊緣檢測;閉合性;哈夫變換;Canny算子
那麼,
其參數空間是一個3D空間A(a,b,r),
[2]章毓晉.圖象處理和分析[M].北京:清華大學出版社,
[4]王娜,李霞.一種新的改進Canny邊緣檢測算法.
邊緣提取以及邊緣增強是不少圖像處理軟件都具有的基本功能,
識別的應用中,圖像邊緣也是非常重要的特征之一。
而又使得總的數據量減小了很多,這正符合特征提取的要求。
何形狀)中,邊緣提取就是前提步驟。
這裡我們只考慮灰度圖像,
復雜一些。要給圖像的邊緣下一個定義還挺困難的,
像上灰度變化劇烈的區域比較符合這個要求,
紋理的圖像上,這有點問題,比如說,
緣包括衣服上的方格。但這個比較困難,
好了,既然邊緣提取是要保留圖像的灰度變化劇烈的區域,
(對於數字圖像來說就是差分),在信號處理的角度來看,
這是最關鍵的一步,
用於圖像識別的邊緣提取往往需要輸出的邊緣是二值圖像,
一個灰度代表邊緣,另一個代表背景。此外,
提取的步驟如下:
1,去噪聲
2,微分運算
3,2值化處理
4,細化
第二步是關鍵,有不少書把第二步就直接稱為邊緣提取。
處理教科書上都會介紹好幾種,如拉普拉茲算子,索貝爾算子,
首先定義一個模板,模板的大小以3*3的較常見,也有2*2,
應到圖像的每一個像素位置,
的結果作為輸出圖像對應像素點的值。
需要說明的是,模板運算是圖像的一種處理手段--鄰域處理,
模板運算實現,如平滑效果,中值濾波(一種消除噪聲的方法),
算法都比較簡單,為人們常用。
關於前面提到的幾種邊緣提取算子(拉普拉茲算子,索貝爾算子,
較為詳細的介紹,我這裡不多說了,(手頭上沒有教科書,
以把這些方法的具體情況仔細介紹一下。
2階微分算子,也就是說,相當於求取2次微分,
況下效果很差)是它的重大缺點,所以這種算子並不是特別常用。
一種一階算子),方法簡單效果也不錯,但提取出的邊緣比較粗,
也可提取出圖像邊緣的方向信息來,有文章論證過,
超過7度。
順便說一句,往往我們在進行邊緣提取時只注意到位置信息,
圖像的邊緣總有一定的走向,我們可以用邊緣曲線的法線方向(
。在圖像識別的應用中,這個方向是非常重要的信息。
上面的幾種算子是屬於比較簡單的方法,
法。首先是馬爾(Marr)算子,
提出的邊緣提取方法可以看成兩個步驟,
說是由兩個濾波器組成,低通濾波去除噪聲,高通濾波提取邊緣。
是根據它數學表達式和濾波器形狀起的名字。
要在7*7以上,所以運算復雜程度比索貝爾算子等要大不少,
另外一種非常重要的算法是坎尼(Canny)算子,
他給出了判斷邊緣提取方法性能的指標。
的方法。比較奇怪的是,國內的圖像處理教科書中,
『計算機視覺與模式識別』(1998年),
用於控制算法的性能,實際上,
最佳效果。它也有模板運算方法,模板的大小也比較大,
,可以根據算子的可分離性用快速算法(否則就會慢的一塌糊涂),
一定的智能性。
還有一種算法:Shen-Castan算子,
算子不相上下,這種算法在對邊緣提取好壞的判別標准上有些不同。
序來,要比坎尼算子還復雜)
在實際的圖像處理與識別應用中,
法,邊緣提取也是一樣,但是基本原理都是一樣的。
canny算子代碼
void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize);
void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma);
void Grad(SIZE sz, LPBYTE pGray, int *pGradX, int *pGradY, int *pMag);
void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst);
void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
double dRatHigh, double dRatLow);
void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult);
void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz);
void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
double dRatHigh, LPBYTE pResult);
#include "afx.h"
#include "math.h"
#include "canny.h"
// 一維高斯分布函數,用於平滑函數中生成的高斯濾波系數
void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize)
{
LONG i;
//數組中心點
int nCenter;
//數組中一點到中心點距離
double dDis;
//中間變量
double dValue;
double dSum;
dSum = 0;
// [-3*sigma,3*sigma] 以內數據,會覆蓋絕大部分濾波系數
*pnWidowSize = 1+ 2*ceil(3*sigma);
nCenter = (*pnWidowSize)/2;
*pdKernel = new double[*pnWidowSize];
//生成高斯數據
for(i=0;i<(*pnWidowSize);i++)
{
dDis = double(i - nCenter);
dValue = exp(-(1/2)*dDis*dDis/(sigma*
(*pdKernel)[i] = dValue;
dSum+=dValue;
}
//歸一化
for(i=0;i<(*pnWidowSize);i++)
{
(*pdKernel)[i]/=dSum;
}
}
//用高斯濾波器平滑原圖像
void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma)
{
LONG x, y;
LONG i;
//高斯濾波器長度
int nWindowSize;
//窗口長度
int nLen;
//一維高斯濾波器
double *pdKernel;
//高斯系數與圖像數據的點乘
double dDotMul;
//濾波系數總和
double dWeightSum;
double *pdTemp;
pdTemp = new double[sz.cx*sz.cy];
//產生一維高斯數據
CreatGauss(sigma, &pdKernel, &nWindowSize);
nLen = nWindowSize/2;
//x方向濾波
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
dDotMul = 0;
dWeightSum = 0;
for(i=(-nLen);i<=nLen;i++)
{
//判斷是否在圖像內部
if((i+x)>=0 && (i+x)<sz.cx)
{
dDotMul+=(double)pGray[y*sz.cx
dWeightSum += pdKernel[nLen+i];
}
}
pdTemp[y*sz.cx+x] = dDotMul/dWeightSum;
}
}
//y方向濾波
for(x=0; x<sz.cx;x++)
{
for(y=0; y<sz.cy; y++)
{
dDotMul = 0;
dWeightSum = 0;
for(i=(-nLen);i<=nLen;i++)
{
if((i+y)>=0 && (i+y)< sz.cy)
{
dDotMul += (double)pdTemp[(y+i)*sz.cx+x]*
dWeightSum += pdKernel[nLen+i];
}
}
pResult[y*sz.cx+x] = (unsigned char)dDotMul/dWeightSum;
}
}
delete []pdKernel;
pdKernel = NULL;
delete []pdTemp;
pdTemp = NULL;
}
// 方向導數,求梯度
void Grad(SIZE sz, LPBYTE pGray,int *pGradX, int *pGradY, int *pMag)
{
LONG y,x;
//x方向的方向導數
for(y=1;y<sz.cy-1;y++)
{
for(x=1;x<sz.cx-1;x++)
{
pGradX[y*sz.cx +x] = (int)( pGray[y*sz.cx+x+1]-pGray[y*sz.
}
}
//y方向方向導數
for(x=1;x<sz.cx-1;x++)
{
for(y=1;y<sz.cy-1;y++)
{
pGradY[y*sz.cx +x] = (int)(pGray[(y+1)*sz.cx +x] - pGray[(y-1)*sz.cx +x]);
}
}
//求梯度
//中間變量
double dSqt1;
double dSqt2;
for(y=0; y<sz.cy; y++)
{
for(x=0; x<sz.cx; x++)
{
//二階范數求梯度
dSqt1 = pGradX[y*sz.cx + x]*pGradX[y*sz.cx + x];
dSqt2 = pGradY[y*sz.cx + x]*pGradY[y*sz.cx + x];
pMag[y*sz.cx+x] = (int)(sqrt(dSqt1+dSqt2)+0.5);
}
}
}
//非最大抑制
void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst)
{
LONG y,x;
int nPos;
//梯度分量
int gx;
int gy;
//中間變量
int g1,g2,g3,g4;
double weight;
double dTmp,dTmp1,dTmp2;
//設置圖像邊緣為不可能的分界點
for(x=0;x<sz.cx;x++)
{
pNSRst[x] = 0;
pNSRst[(sz.cy-1)*sz.cx+x] = 0;
}
for(y=0;y<sz.cy;y++)
{
pNSRst[y*sz.cx] = 0;
pNSRst[y*sz.cx + sz.cx-1] = 0;
}
for(y=1;y<sz.cy-1;y++)
{
for(x=1;x<sz.cx-1;x++)
{
//當前點
nPos = y*sz.cx + x;
//如果當前像素梯度幅度為0,則不是邊界點
if(pMag[nPos] == 0)
{
pNSRst[nPos] = 0;
}
else
{
//當前點的梯度幅度
dTmp = pMag[nPos];
//x,y方向導數
gx = pGradX[nPos];
gy = pGradY[nPos];
//如果方向導數y分量比x分量大,說明導數方向趨向於y分量
if(abs(gy) > abs(gx))
{
//計算插值比例
weight = fabs(gx)/fabs(gy);
g2 = pMag[nPos-sz.cx];
g4 = pMag[nPos+sz.cx];
//如果x,y兩個方向導數的符號相同
//C 為當前像素,與g1-g4 的位置關系為:
//g1 g2
// C
// g4 g3
if(gx*gy>0)
{
g1 = pMag[nPos-sz.cx-1];
g3 = pMag[nPos+sz.cx+1];
}
//如果x,y兩個方向的方向導數方向相反
//C是當前像素,與g1-g4的關系為:
// g2 g1
// C
// g3 g4
else
{
g1 = pMag[nPos-sz.cx+1];
g3 = pMag[nPos+sz.cx-1];
}
}
//如果方向導數x分量比y分量大,說明導數的方向趨向於x分量
else
{
//插值比例
weight = fabs(gy)/fabs(gx);
g2 = pMag[nPos+1];
g4 = pMag[nPos-1];
//如果x,y兩個方向的方向導數符號相同
//當前像素C與 g1-g4的關系為
// g3
// g4 C g2
// g1
if(gx * gy > 0)
{
g1 = pMag[nPos+sz.cx+1];
g3 = pMag[nPos-sz.cx-1];
}
//如果x,y兩個方向導數的方向相反
// C與g1-g4的關系為
// g1
// g4 C g2
// g3
else
{
g1 = pMag[nPos-sz.cx+1];
g3 = pMag[nPos+sz.cx-1];
}
}
//利用 g1-g4 對梯度進行插值
{
dTmp1 = weight*g1 + (1-weight)*g2;
dTmp2 = weight*g3 + (1-weight)*g4;
//當前像素的梯度是局部的最大值
//該點可能是邊界點
if(dTmp>=dTmp1 && dTmp>=dTmp2)
{
pNSRst[nPos] = 128;
}
else
{
//不可能是邊界點
pNSRst[nPos] = 0;
}
}
}
}
}
}
// 統計pMag的直方圖,判定閾值
void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
double dRatHigh, double dRatLow)
{
LONG y,x,k;
//該數組的大小和梯度值的范圍有關,如果采用本程序的算法
//那麼梯度的范圍不會超過pow(2,10)
int nHist[256];
//可能邊界數
int nEdgeNum;
//最大梯度數
int nMaxMag;
int nHighCount;
nMaxMag = 0;
//初始化
for(k=0;k<256;k++)
{
nHist[k] = 0;
}
//統計直方圖,利用直方圖計算閾值
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
if(pGray[y*sz.cx+x]==128)
{
nHist[pMag[y*sz.cx+x]]++;
}
}
}
nEdgeNum = nHist[0];
nMaxMag = 0;
//統計經過「非最大值抑制」後有多少像素
for(k=1;k<256;k++)
{
if(nHist[k] != 0)
{
nMaxMag = k;
}
//梯度為0的點是不可能為邊界點的
//經過non-maximum suppression後有多少像素
nEdgeNum += nHist[k];
}
//梯度比高閾值*pThrHigh 小的像素點總書目
nHighCount = (int)(dRatHigh * nEdgeNum + 0.5);
k=1;
nEdgeNum = nHist[1];
//計算高閾值
while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount))
{
k++;
nEdgeNum += nHist[k];
}
*pThrHigh = k;
//低閾值
*pThrLow = (int)((*pThrHigh) * dRatLow + 0.5);
}
//利用函數尋找邊界起點
void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult)
{
LONG y,x;
int nThrHigh,nThrLow;
int nPos;
//估計TraceEdge 函數需要的低閾值,以及Hysteresis函數使用的高閾值
EstimateThreshold(pMag, sz,&nThrHigh,&nThrLow,pResult,
//尋找大於dThrHigh的點,這些點用來當作邊界點,
//然後用TraceEdge函數跟蹤該點對應的邊界
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
nPos = y*sz.cx + x;
//如果該像素是可能的邊界點,並且梯度大於高閾值,
//該像素作為一個邊界的起點
if((pResult[nPos]==128) && (pMag[nPos] >= nThrHigh))
{
//設置該點為邊界點
pResult[nPos] = 255;
TraceEdge(y,x,nThrLow,pResult,
}
}
}
//其他點已經不可能為邊界點
for(y=0;y<sz.cy;y++)
{
for(x=0;x<sz.cx;x++)
{
nPos = y*sz.cx + x;
if(pResult[nPos] != 255)
{
pResult[nPos] = 0;
}
}
}
}
//根據Hysteresis 執行的結果,從一個像素點開始搜索,
//一條邊界的所有邊界點,函數采用了遞歸算法
// 從(x,y)坐標出發,進行邊界點的跟蹤,
// 點的像素(=128),像素值為0表明該點不可能是邊界點,
void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz)
{
//對8鄰域像素進行查詢
int xNum[8] = {1,1,0,-1,-1,-1,0,1};
int yNum[8] = {0,1,1,1,0,-1,-1,-1};
LONG yy,xx,k;
for(k=0;k<8;k++)
{
yy = y+yNum[k];
xx = x+xNum[k];
if(pResult[yy*sz.cx+xx]==128 && pMag[yy*sz.cx+xx]>=nThrLow )
{
//該點設為邊界點
pResult[yy*sz.cx+xx] = 255;
//以該點為中心再進行跟蹤
TraceEdge(yy,xx,nThrLow,
}
}
}
// Canny算子
void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
double dRatHigh, LPBYTE pResult)
{
//經過高斯濾波後的圖像
LPBYTE pGaussSmooth;
pGaussSmooth = new unsigned char[sz.cx*sz.cy];
//x方向導數的指針
int *pGradX;
pGradX = new int[sz.cx*sz.cy];
//y方向
int *pGradY;
pGradY = new int[sz.cx*sz.cy];
//梯度的幅度
int *pGradMag;
pGradMag = new int[sz.cx*sz.cy];
//對原圖高斯濾波
GaussianSmooth(sz,pGray,
//計算方向導數和梯度的幅度
Grad(sz,pGaussSmooth,pGradX,
//應用非最大抑制
NonmaxSuppress(pGradMag,
//應用Hysteresis,找到所有邊界
Hysteresis(pGradMag,sz,
delete[] pGradX;
pGradX = NULL;
delete[] pGradY;
pGradY = NULL;
delete[] pGradMag;
pGradMag = NULL;
delete[] pGaussSmooth;
pGaussSmooth = NULL;
}
/*
void CChildWnd::OnCanny()
{
if (! m_fOpenFile)
{
return;
}
m_fDone = TRUE;
RGBToGray(szImg, aRGB, aGray, BPP);
Canny(aGray,szImg,0.1,0.9,0.
ShowGrayImage("l",szImg,
}
//*/