python中使用Numpy创建数组应该注意的部分
注:本文均是使用Jupyter进行演示。
import numpy as np
arr = np.array([1,2,3])
np.dot(arr.T,arr)
OUT : 14
#此处按照我们的认识来看应该是在经过向量内积后得到一个3 X 3的矩阵,但最终的结果却是一个1 X 1的整数。
arr.T
OUT : array([1, 2, 3])
arr
OUT : array([1, 2, 3])
#可以发现arr和arr.T的形式是一模一样的。
np.shape(arr)
OUT : (3,)
#并且arr的shape也是一个奇怪的(3,)的形式。
解决方法:使用Numpy时,最好不要这么创建数组,按理来说arr.T应该是列向量,但显示出来的却是行向量的形式,因为arr是秩为1的数组,他不具备转置的能力,要创建一个行向量或者列向量要按如下的方法创建。
arr = np.array([[1,2,3]])
arr
OUT : array([[1, 2, 3]])
#很容易看出我们要用创建二维矩阵的形式去创建一维向量,这样代码才能够符合我们的设想。
np.shape(arr)
OUT : (1, 3)
arr.T
OUT :
array([[1],
[2],
[3]])
np.dot(arr.T,arr)
OUT :
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
写在最后的话:Numpy库中的向量化确实给我们带来了很多的便利,并且其中的“广播”也给我们使用带来了很多的便捷,但在使用Numpy数组时,如果不加注意,运算结果往往会出乎我们的意料,在这里给出对于合理创建一维行、列向量的方法,希望大家能够将其运用到自己的日常编程中去。