python中使用Numpy创建一维向量应该注意的部分

python中使用Numpy创建数组应该注意的部分

注:本文均是使用Jupyter进行演示。

import numpy as np

arr = np.array([1,2,3])

np.dot(arr.T,arr)

OUT : 14

#此处按照我们的认识来看应该是在经过向量内积后得到一个3 X 3的矩阵,但最终的结果却是一个1 X 1的整数。

arr.T

OUT : array([1, 2, 3])

arr

OUT : array([1, 2, 3])

#可以发现arr和arr.T的形式是一模一样的。

np.shape(arr)

OUT : (3,)

#并且arr的shape也是一个奇怪的(3,)的形式。

解决方法:使用Numpy时,最好不要这么创建数组,按理来说arr.T应该是列向量,但显示出来的却是行向量的形式,因为arr是秩为1的数组,他不具备转置的能力,要创建一个行向量或者列向量要按如下的方法创建。

arr = np.array([[1,2,3]])

arr

OUT : array([[1, 2, 3]])

#很容易看出我们要用创建二维矩阵的形式去创建一维向量,这样代码才能够符合我们的设想。

np.shape(arr)

OUT : (1, 3)

arr.T

OUT :

array([[1],
       [2],
       [3]])
np.dot(arr.T,arr)

OUT :

array([[1, 2, 3],
       [2, 4, 6],
       [3, 6, 9]])

写在最后的话:Numpy库中的向量化确实给我们带来了很多的便利,并且其中的“广播”也给我们使用带来了很多的便捷,但在使用Numpy数组时,如果不加注意,运算结果往往会出乎我们的意料,在这里给出对于合理创建一维行、列向量的方法,希望大家能够将其运用到自己的日常编程中去。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值