torch.tile 与 .repeat方法的区别

首先,从大体的功能上来看,两者均是相同的,能够按照一定维度对张量进行复制,但细微上还是有一定差距。

torch.tile

  • 参数更灵活:类似 NumPy 中的 tile,允许传入的重复因子数量与原始张量维度数不一致。如果重复因子多于张量维度,PyTorch 会先在张量前面添加额外的维度,再执行复制。

  • 作用:实现与 NumPy tile 类似的行为,使得对新维度的扩展变得更加直观。例如,一个一维张量 [1, 2, 3],调用 tile(2, 3) 会将其先扩展为二维(在最前面添加一维),再沿着每个维度复制,得到的结果形状为 (2, 9)(具体形状依赖于输入张量和传入的参数)。

import torch

x = torch.Tensor([1,2,3])

y = torch.tile(x,dims=(2,3))

print(y,y.shape)

运行结果:

tensor([[1., 2., 3., 1., 2., 3., 1., 2., 3.],
        [1., 2., 3., 1., 2., 3., 1., 2., 3.]]) torch.Size([2, 9])

.repeat方法

  • 参数数量:要求传入的重复因子数量与张量的维度数一致。例如,一个 shape 为 (3, 4) 的张量,使用 repeat(2, 3) 后,会在第一维重复 2 次,第二维重复 3 次,最终得到 shape (3*2, 4*3)(6, 12)

  • 作用:直接在每个已有维度上复制数据。

  • 注意:如果想对部分维度不重复,可以用 1 表示(例如:repeat(1, 3))。

import torch

x = torch.randint(0,12,(3,4))

y = x.repeat((3,4))

print(y,y.shape)

运行结果:

tensor([[ 9,  6,  0,  6,  9,  6,  0,  6,  9,  6,  0,  6,  9,  6,  0,  6],
        [ 0,  2,  0,  3,  0,  2,  0,  3,  0,  2,  0,  3,  0,  2,  0,  3],
        [ 1,  2,  1, 10,  1,  2,  1, 10,  1,  2,  1, 10,  1,  2,  1, 10],
        [ 9,  6,  0,  6,  9,  6,  0,  6,  9,  6,  0,  6,  9,  6,  0,  6],
        [ 0,  2,  0,  3,  0,  2,  0,  3,  0,  2,  0,  3,  0,  2,  0,  3],
        [ 1,  2,  1, 10,  1,  2,  1, 10,  1,  2,  1, 10,  1,  2,  1, 10],
        [ 9,  6,  0,  6,  9,  6,  0,  6,  9,  6,  0,  6,  9,  6,  0,  6],
        [ 0,  2,  0,  3,  0,  2,  0,  3,  0,  2,  0,  3,  0,  2,  0,  3],
        [ 1,  2,  1, 10,  1,  2,  1, 10,  1,  2,  1, 10,  1,  2,  1, 10]]) torch.Size([9, 16])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值