Text-to-image(文生图)模型是一种先进的人工智能技术,能够将描述性文本转换成相应的图像。这种模型的核心功能是解读用户输入的自然语言描述,并基于这些描述生成视觉内容。这类模型的实现通常依赖于深度学习框架,特别是生成对抗网络(GANs)或变分自编码器(VAEs)。
在模型训练过程中,需要大量的文本-图像对作为数据源。通过这些数据,模型学习如何将文本信息映射到图像特征上,理解和把握不同文本描述对应的视觉元素和风格。例如,给定描述“一个坐在山顶上的红色帐篷”,模型将生成展示该场景的图像。
常见的文生图模型有:(1)OpenAI的DALL-E;(2)Google的Imagen;(3)Stable Diffusion;(4)Midjourney;(5)DeepMind的VQ-GAN+CLIP。