用tensorflow实现,验证tf.nn.softmax_cross_entropy_with_logits的过程

 

 

# -*- coding: utf-8 -*-
"""
Created on Mon Dec 24 21:32:37 2018

@author: ZZL
"""

import tensorflow as tf
import time
#our NN's output
logits=tf.constant([[1.0,2.0,3.0],
                    [1.0, 2.0, 3.0]])
#step1:do softmax
y=tf.nn.softmax(logits)
#true label
y_=tf.constant([[0.0, 0.4, 1.0],
                [0.0, 0.4, 1.0]])
#step2:do cross_entropy
a=tf.log(y)
b=y_*a
cross_entropy = -y_*tf.log(y)
#do cross_entropy just one step
cross_entropy2= tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=logits)#dont forget tf.reduce_sum()!!

with tf.Session() as sess:
    # with tf.device('/gpu:0'):
        softmax=sess.run(y)
        b=sess.run(b)
        c=sess.run(a)
        c_e = sess.run(cross_entropy)
        c_e2 = sess.run(cross_entropy2)
        # print("tf.log(y)")
        # print(c)
        print("step1:softmax result=")
        print(softmax)

        print('交叉熵b=y_*tf.log(y)')
        print(b)

        print("step2:cross_entropy result=")
        print(c_e)
        print("Function(softmax_cross_entropy_with_logits) result=")
        print(c_e2)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值