2243: [SDOI2011]染色
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 8415 Solved: 3155
[ Submit][ Status][ Discuss]
Description
给定一棵有n个节点的无根树和m个操作,操作有2类:
1、将节点a到节点b路径上所有点都染成颜色c;
2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”、“222”和“1”。
请你写一个程序依次完成这m个操作。
Input
第一行包含2个整数n和m,分别表示节点数和操作数;
第二行包含n个正整数表示n个节点的初始颜色
下面 行每行包含两个整数x和y,表示x和y之间有一条无向边。
下面 行每行描述一个操作:
“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;
“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。
Output
对于每个询问操作,输出一行答案。
Sample Input
6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
Sample Output
3
1
2
1
2
HINT
数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。
Source
解题思路:树链剖分
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int n, q, x, y, z;
int a[100009], g[100009], top[100009], G[100009];
int s[100009], nt[200009], e[200009], cnt, lazy[100009 << 2];
int ct[100009], mx[100009], fa[100009], dep[100009];
char ch[5];
struct node
{
int lx, rx, sum;
node(int lx = 0, int rx = 0, int sum = 0) :lx(lx), rx(rx), sum(sum) {};
}f[100009 << 2];
void dfs(int k, int f)
{
dep[k] = dep[f] + 1;
fa[k] = f, ct[k] = 1, mx[k] = 0;
for (int i = s[k]; ~i; i = nt[i])
{
if (e[i] == f) continue;
dfs(e[i], k);
ct[k] += ct[e[i]];
if (ct[e[i]] > ct[mx[k]]) mx[k] = e[i];
}
}
void Dfs(int k, int t)
{
top[k] = !t ? k : top[fa[k]];
g[k] = ++cnt, G[cnt] = k;
if (mx[k]) Dfs(mx[k], 1);
for (int i = s[k]; ~i; i = nt[i])
{
if (e[i] == fa[k] || e[i] == mx[k]) continue;
Dfs(e[i], 0);
}
}
node Union(node l, node r)
{
return node(l.lx, r.rx, l.sum + r.sum - (int)(l.rx == r.lx));
}
void Push(int k)
{
lazy[k << 1] = lazy[k << 1 | 1] = lazy[k];
f[k << 1] = node(lazy[k], lazy[k], 1);
f[k << 1 | 1] = node(lazy[k], lazy[k], 1);
lazy[k] = -1;
}
void build(int k, int l, int r)
{
lazy[k] = -1;
if (l == r) { f[k] = node(a[G[l]], a[G[l]], 1); return; }
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
f[k] = Union(f[k << 1], f[k << 1 | 1]);
}
void update(int k, int l, int r, int ll, int rr, int val)
{
if (l >= ll&&r <= rr) { lazy[k] = val, f[k] = node(val, val, 1); return; }
if (lazy[k] != -1) Push(k);
int mid = (l + r) >> 1;
if (mid >= ll) update(k << 1, l, mid, ll, rr, val);
if (rr > mid) update(k << 1 | 1, mid + 1, r, ll, rr, val);
f[k] = Union(f[k << 1], f[k << 1 | 1]);
}
node query(int k, int l, int r, int ll, int rr)
{
if (l >= ll&&r <= rr) return f[k];
if (lazy[k] != -1) Push(k);
int mid = (l + r) >> 1;
node p = node(0, 0, -1);
if (ll <= mid) p = query(k << 1, l, mid, ll, rr);
if (rr > mid)
{
if (p.sum == -1) p = query(k << 1 | 1, mid + 1, r, ll, rr);
else p = Union(p, query(k << 1 | 1, mid + 1, r, ll, rr));
}
return p;
}
void update(int x, int y, int val)
{
while (top[x] != top[y])
{
if (dep[top[x]] < dep[top[y]]) swap(x, y);
update(1, 1, n, g[top[x]], g[x], val); x = fa[top[x]];
}
if (dep[x] > dep[y]) swap(x, y);
update(1, 1, n, g[x], g[y], val);
}
void query(int x, int y)
{
node xx = node(-1, -1, 0), yy = node(-1, -1, 0), zz = node(-1, -1, 0);
while (top[x] != top[y])
{
if (dep[top[x]] > dep[top[y]])
{
xx = Union(query(1, 1, n, g[top[x]], g[x]), xx);
x = fa[top[x]];
}
else
{
yy = Union(query(1, 1, n, g[top[y]], g[y]), yy);
y = fa[top[y]];
}
}
swap(xx.lx, xx.rx);
if (dep[x] > dep[y]) zz = query(1, 1, n, g[y], g[x]), swap(zz.lx, zz.rx);
else zz = query(1, 1, n, g[x], g[y]);
xx = Union(xx, Union(zz, yy));
printf("%d\n", xx.sum);
}
int main()
{
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
while (~scanf("%d%d", &n, &q))
{
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
memset(s, -1, sizeof s);
dep[0] = ct[0] = cnt = 0;
int u, v;
for (int i = 1; i < n; i++)
{
scanf("%d%d", &u, &v);
nt[cnt] = s[u], s[u] = cnt, e[cnt++] = v;
nt[cnt] = s[v], s[v] = cnt, e[cnt++] = u;
}
dfs(1, 0);
Dfs(1, cnt = 0);
build(1, 1, n);
while (q--)
{
scanf("%s", ch);
if (ch[0] == 'C')
{
scanf("%d%d%d", &x, &y, &z);
update(x, y, z);
}
else
{
scanf("%d%d", &x, &y);
query(x, y);
}
}
}
return 0;
}