Dijkstra

    //Dijkstra算法  
    //图:  
    /************************************************************************/  
    /*             
    16
    0 1 1 
    0 2 5 
    1 2 3 
    1 3 7 
    1 4 5 
    2 4 1 
    2 5 7 
    3 4 2 
    4 5 3 
    3 6 3 
    4 6 6 
    4 7 9 
    5 7 5 
    6 7 2 
    6 8 7 
    7 8 4                                                         */  
    /************************************************************************/


#include <iostream>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <set>
#include <stack>

using namespace std;

#define maxn 10
#define inf  0x3f3f3f3f					//最大值    
#define MAXV  9							//点的数量  
int mat[MAXV][MAXV];					//矩阵图
vector<int> dis(MAXV, inf);             //记录起始点到这个点的最短距离  
vector<int> from(MAXV, 0);            //记录路径  
vector<bool> visited(MAXV, false);      //标记点是否计算过  
vector<vector<int> > DIS;               //存储每个点的Dijkstra算法的二维向量  
vector<vector<int> > FROM;            //存储所有路径的二维向量  
				
/*				节点0的最短路径					*/
//void Dijkstra(){  
//    
//  int Now;  
//  visited[0] = true;  
//  for( int v = 0 ; v < MAXV ; v ++ )  
//      dis[v] = mat[0][v];  
//    
//  for( int i = 1 ; i < MAXV ; i ++ ){  
//        
//      int minn = inf;  
//      for( int w = 0 ; w < MAXV ; w ++ ){  
//          if( !visited[w] && dis[w] < minn ){  
//              minn = dis[w];  
//              Now = w;  
//          }  
//      }  
//      visited[Now] = true;  
//      for( int w = 0 ; w < MAXV ; w ++ ){  
//          if( !visited[w] && dis[Now]+mat[Now][w] < dis[w] ){  
//              dis[w] = dis[Now]+mat[Now][w];  
//              from[w] = Now;  
//          }  
//      }  
//  }  
//    
//}  


/*     所有点到所有点的最短路径     */   
void Dijkstra() {

	//当前节点  
	int Now;
	//求所有点到所有点的最短路径     
	for (int count = 0; count < MAXV; count++) {
		//把以count点为起始点  到其他所有点的距离先记录 假设是最短  如果没有边就是inf  
		for (int v = 0; v < MAXV; v++)
			dis[v] = mat[count][v];
		//当前点到当前点距离是0  标记true  
		visited[count] = true;
		dis[count] = 0;
		//以count为起始点  最终都会回溯到count  所以初值为count 即 每一个节点都是从count出发中间经过1个或多个节点到达
		from = vector<int>(MAXV, count);
		//循环n次   松弛操作
		for (int i = 1; i < MAXV; i++) {

			int minn = inf;
			//找到起始点到这个点的最短的那个点  以这个点进行松弛操作  
			for (int w = 0; w < MAXV; w++) {
				if (!visited[w] && dis[w] < minn) {
					minn = dis[w];
					Now = w;
				}
			}
			//这句话一定要有  这个Now是已经松弛过得点  其值一定是起始点到这个点的最短距离  
			visited[Now] = true;
			/*******************************************************/
			//开始松弛操作  整个算法的核心  
			for (int w = 0; w < MAXV; w++) {
				if (!visited[w] && dis[Now] + mat[Now][w] < dis[w]) {
					dis[w] = dis[Now] + mat[Now][w];
					//记录路径  从点Now到点w  
					from[w] = Now;
				}
			}
			/*******************************************************/
		}

		vector<int> v(dis.begin(), dis.end());
		DIS.push_back(v);
		FROM.push_back(from);

		//开始求下个点的Dijkstra   对数组进行初始化  
		for (int i = 0; i < MAXV; i++) {
			visited[i] = false;
			dis[i] = inf;
			from[i] = 0;
		}
	}
}
void init() {
	for (int i = 0; i < MAXV; i++) {
		for (int j = 0; j < MAXV; j++)
			mat[i][j] = inf;
	}
}
void write() {
	int m;  //边的数量  
	cin >> m;
	//  start->end 权值为weight  有向无向都适用  唯一不同 的是无向图需要对称赋值  
	for (int i = 0; i < m; i++) {
		int start, end, weight;
		cin >> start >> end >> weight;
		mat[start][end] = mat[end][start] = weight;
	}
}
void printlnDis() {
	for (int i = 0; i < MAXV; i++) {
		printf("以节点%d为起始点:",i);
		for (int j = 0; j < DIS[i].size(); j++)
			cout << DIS[i][j] << " ";
		cout << endl;
	}
	cout << endl;
}
//start为起始点的单源最短路径   找到 u -> v 的路径  
void printPath(int node , int u , int w) {

	cout << u << " -> " << w << " 的路径为: ";
	vector<int> v(FROM[node]);
	stack<int> s;
	int start = u;
	int	end = w;
	while (end != start) {
		s.push(end);
		end = v[end];
	}
	s.push(start);

	while (!s.empty()) {
		cout << s.top();
		s.pop();
		if (s.size() > 0)
			cout << " -> ";
	}
	cout << endl;
	cout << u << " -> " << w << " 的最短值为: " << DIS[u][w] << endl;
	
	
}
int main()
{
	//将所有边初始化为inf  
	init();
	//读入矩阵图
	write();
	//开始Dijkstra算法  
	Dijkstra();
	//打印最短路径值
	printlnDis();
	//打印路径
        for (int i = 0; i < MAXV; i++) {
            for (int j = 0; j < MAXV; j++) 
              printPath(i,i,j);
            
            cout << "************************" << endl;
        }
	system("pause");
	return 0;
}



使用优化算法,以优化VMD算法的惩罚因子惩罚因子 (α) 和分解层数 (K)。 1、将量子粒子群优化(QPSO)算法与变分模态分解(VMD)算法结合 VMD算法背景: VMD算法是一种自适应信号分解算法,主要用于分解信号为不同频率带宽的模态。 VMD的关键参数包括: 惩罚因子 α:控制带宽的限制。 分解层数 K:决定分解出的模态数。 QPSO算法背景: 量子粒子群优化(QPSO)是一种基于粒子群优化(PSO)的一种改进算法,通过量子行为模型增强全局搜索能力。 QPSO通过粒子的量子行为使其在搜索空间中不受位置限制,从而提高算法的收敛速度与全局优化能力。 任务: 使用QPSO优化VMD中的惩罚因子 α 和分解层数 K,以获得信号分解的最佳效果。 计划: 定义适应度函数:适应度函数根据VMD分解的效果来定义,通常使用重构信号的误差(例如均方误差、交叉熵等)来衡量分解的质量。 初始化QPSO粒子:定义粒子的位置和速度,表示 α 和 K 两个参数。初始化时需要在一个合理的范围内为每个粒子分配初始位置。 执行VMD分解:对每一组 α 和 K 参数,运行VMD算法分解信号。 更新QPSO粒子:使用QPSO算法更新粒子的状态,根据适应度函数调整粒子的搜索方向和位置。 迭代求解:重复QPSO的粒子更新步骤,直到满足终止条件(如适应度函数达到设定阈值,或最大迭代次数)。 输出优化结果:最终,QPSO算法会返回一个优化的 α 和 K,从而使VMD分解效果最佳。 2、将极光粒子(PLO)算法与变分模态分解(VMD)算法结合 PLO的优点与适用性 强大的全局搜索能力:PLO通过模拟极光粒子的运动,能够更高效地探索复杂的多峰优化问题,避免陷入局部最优。 鲁棒性强:PLO在面对高维、多模态问题时有较好的适应性,因此适合海上风电时间序列这种非线性、多噪声的数据。 应用场景:PLO适合用于优化VMD参数(α 和 K),并将其用于风电时间序列的预测任务。 进一步优化的建议 a. 实现更细致的PLO更新策略,优化极光粒子的运动模型。 b. 将PLO优化后的VMD应用于真实的海上风电数据,结合LSTM或XGBoost等模型进行风电功率预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值