一、IS(Inception loss)
GAN(生成对抗网络)中生成器通过目标函数来优化生成的图片骗过判别器的性能,判别器则通过损失函数来增强自己判别生成图片的性能。但是这并不能很好地判别生成图片的质量以及多样性。于是便有用IS(inception score)和下文中将要提到的FID(Fréchet Inception Distance)这两个指标。
之所以叫做Inception loss是因为这个指标需要用到Inception net来提取图片的特征。简单来说就是将生成的图片送入Inception net提取特征并对其进行分类。如果生成的图片质量较好,那么它应该具有较高的识别度,体现在分类结果上就是能够被更准确的分类,而分类正确的概率P(y|x)则被期望更大,用熵来表示则E(P(y|x))应该较小。上述函数只能使得生成的图片更具有真实性。而不能确保生成图像的多样性。众所周知GAN具有模式坍塌以及训练不稳定的缺点。若发生模式坍塌,则只会生成同一张图片。为了保证生成图片的多样性体现在P(y)的熵,若P(y)的熵越大则多样性越好。
将上面两个函数结合起来用KL散度表示则得到IS,则IS值越大表明图像的质量以及多样性都很好,公式如下:
然而有一个问题就是p(y)与p(y|x)并不相互独立,当模式坍塌发生时 x与生成的y就完全不独立了,这也导致IS不能解决模式坍塌。