浅谈:高斯过程与贝叶斯优化

本文介绍了高斯过程和贝叶斯优化的概念及其在机器学习中的应用。高斯过程是一种随机过程,当其有限维分布为正态分布时,常用于复杂函数的建模。贝叶斯优化则是在函数无解析表达或存在外界干预的情况下,寻找函数极值的一种策略,它通过高斯过程估计模型,并利用提取函数来指导采样。常见的提取函数包括Expected Improvement(EI)和Upper Confidence Bound(UCB),它们在探索与利用之间寻求平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        高斯过程(Gaussian process)

        高斯过程常在论文里面简写为GP。定义:如果随机过程的有限维分布均为正态分布,则称此随机过程为高斯过程或正态过程。

        首先我们来解读一下定义:

        第一个问题:什么是随机过程?

 

        大家都学过概率论,一定知道什么叫样本空间和随机变量(此处假设读者知道)。在概率论中,讲过样本空间,随机变量相当于是在样本空间中的一次采样,采样的结果是一个事件,在每次采样的时候都满足一定的分布。随机过程和随机变量的区别在于,样本空间里装的不是事件,装的是过程(一串事件)。每次的采样的结果是一个过程,比如一个序列,一个时间的函数等等。

 

        样本空间就是图中蓝紫色的部分,在蓝紫色空间中随便画一条函数,都是一个可能的随机过程。(这张图是盗用的“阿米斯丹猫的博客”)

        第二个问题:什么是“随机过程的有限维分布均为正态分布”?

        我们先来看一个随机序列:这是一个有限维n的序列,我们可以理解为一个无穷维序列进行的n次采样。在这里可以理解为时间,但是更准确的应该理解为一个连续的指标集。因为其一般性,就可以看成的有限维分布。

        所以“随机过程的有限维分布均为正态分布”就好理解了,即

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值