高斯过程(Gaussian process)
高斯过程常在论文里面简写为GP。定义:如果随机过程的有限维分布均为正态分布,则称此随机过程为高斯过程或正态过程。
首先我们来解读一下定义:
第一个问题:什么是随机过程?
大家都学过概率论,一定知道什么叫样本空间和随机变量(此处假设读者知道)。在概率论中,讲过样本空间,随机变量相当于是在样本空间中的一次采样,采样的结果是一个事件,在每次采样的时候都满足一定的分布。随机过程和随机变量的区别在于,样本空间里装的不是事件,装的是过程(一串事件)。每次的采样的结果是一个过程,比如一个序列,一个时间的函数等等。
样本空间就是图中蓝紫色的部分,在蓝紫色空间中随便画一条函数,都是一个可能的随机过程。(这张图是盗用的“阿米斯丹猫的博客”)
第二个问题:什么是“随机过程的有限维分布均为正态分布”?
我们先来看一个随机序列:这是一个有限维n的序列,我们可以理解为一个无穷维序列
进行的n次采样。
在这里可以理解为时间,但是更准确的应该理解为一个连续的指标集。
因为其一般性,就可以看成
的有限维分布。
所以“随机过程的有限维分布均为正态分布”就好理解了,即