【课件】Python调用OpenAI API实现ChatGPT多轮对话

Python调用openai API实现多轮对话

如何实现多轮对话?

gpt-3.5-turbo 模型调用方法 openai.ChatCompletion.create 里传入的 message 是一个列表,列表里每个元素是字典,包含了角色和内容,我们只需将每轮对话都存储起来,然后每次提问都带上之前的问题和回答即可。

最终效果

在这里插入图片描述

实现代码

import openai
import json
import os

os.environ["HTTP_PROXY"] = "http://127.0.0.1:20171"
os.environ["HTTPS_PROXY"] = "http://127.0.0.1:20171"

# 获取 api
def get_api_key():
    # 可以自己根据自己实际情况实现
    # 以我为例子,我是存在一个 openai_key 文件里,json 格式
    '''
    {"api": "你的 api keys"}
    '''
    openai_key_file = './envs/openai_key'
    with open(openai_key_file, 'r', encoding='utf-8') as f:
        openai_key = json.loads(f.read())
    return openai_key['api']
openai.api_key = get_api_key() 


class ChatGPT:
    def __init__(self, user):
        self.user = user
        self.messages = [{"role": "system", "content": "一个有10年Python开发经验的资深算法工程师"}]
        self.filename="./user_messages.json"

    def ask_gpt(self):
        # q = "用python实现:提示手动输入3个不同的3位数区间,输入结束后计算这3个区间的交集,并输出结果区间"
        rsp = openai.ChatCompletion.create(
          model="gpt-3.5-turbo",
          messages=self.messages
        )
        return rsp.get("choices")[0]["message"]["content"]

    def writeTojson(self):
        try:
            # 判断文件是否存在
            if not os.path.exists(self.filename):
                with open(self.filename, "w") as f:
                    # 创建文件
                    pass
            # 读取
            with open(self.filename, 'r', encoding='utf-8') as f:
                content = f.read()
                msgs = json.loads(content) if len(content) > 0 else {}
            # 追加
            msgs.update({self.user : self.messages})
            # 写入
            with open(self.filename, 'w', encoding='utf-8') as f:
                json.dump(msgs, f)
        except Exception as e:
            print(f"错误代码:{e}")           

def main():
    user = input("请输入用户名称: ")
    chat = ChatGPT(user)
    
    # 循环
    while 1:
        # 限制对话次数
        if len(chat.messages) >= 11:
            print("******************************")
            print("*********强制重置对话**********")
            print("******************************")
            # 写入之前信息
            chat.writeTojson()
            user = input("请输入用户名称: ")
            chat = ChatGPT(user)
            
        # 提问
        q = input(f"【{chat.user}】")
        
        # 逻辑判断
        if q == "0":
            print("*********退出程序**********")
            # 写入之前信息
            chat.writeTojson()
            break
        elif q == "1":
            print("**************************")
            print("*********重置对话**********")
            print("**************************")
            # 写入之前信息
            chat.writeTojson()
            user = input("请输入用户名称: ")
            chat = ChatGPT(user)
            continue
            
        # 提问-回答-记录
        chat.messages.append({"role": "user", "content": q})
        answer = chat.ask_gpt()
        print(f"【ChatGPT】{answer}")
        chat.messages.append({"role": "assistant", "content": answer})

if __name__ == '__main__':
    main()

代码解析:

ChatGPT 类,包含三个函数:

  • __init__初始化函数,初始化了三个个实例变量,user、messages、filename(当前用户、消息列表、存储记录的文件路径)。

  • ask_gpt函数,将当前用户所有历史消息+最新提问发送给 gpt-3.5-turbo ,并返回响应结果。

  • writeTojson函数,结束/重置用户时记录当前用户之前的访问数据。

  • main函数,程序入口函数,用户输入用户名后进入与 ChatGPT 的循环对话中,输入 0 退出程序,输入 1 重置用户,退出和重置都会将当前用户之前访问数据记录搭配 json 文件中。

  • 由于 gpt-3.5-turbo 单次请求最大 token 数为:4096,所以代码里限制了下对话次数。

更多拓展

  • 你可以写个函数,从 json 文件读取历史用户访问记录,然后每次访问可以选用户。
  • 你可以写个 web 服务,使用 session 或者数据库支持多用户同时登录,同时访问。
  • 你可以基于之前分享的钉钉机器人项目,将 gpt-3.5-turbo 接入钉钉机器人。
### 二维前缀和算法在瓦片图案生成或处理中的应用 #### 定义与基本原理 二维前缀和是一种用于快速求解矩形区域内元素总和的技术。对于给定的一个矩阵 `A`,可以预先计算一个新的矩阵 `prefixSum`,其中每个元素 `(i,j)` 表示从原点 `(0,0)` 到当前坐标的子矩阵内所有数值之和。 通过这种方式,在后续查询任意指定区域内的元素累积值时只需常数时间复杂度 O(1),因为只需要访问四个预处理过的节点即可完成加减运算得出结果[^1]。 #### 应用场景分析 当涉及到像地图服务这样的应用场景时——特别是采用分层切片机制的地图系统(如微软 Bing 地图),这种技术能够显著提升性能效率: - **加速渲染过程**:利用二维前缀和可以在瞬间获取特定范围内的数据汇总信息,从而加快图像合成速度; - **简化碰撞检测逻辑**:游戏开发等领域经常需要用到对象间相互作用判断,借助此方法可迅速定位目标区间并作出响应; - **优化路径规划算法**:无论是最短路还是其他形式的空间搜索问题,都能受益于高效的数据检索能力所带来的优势[^2]。 #### 实现案例展示 下面给出一段 Python 代码片段作为例子说明如何基于上述理论框架构建实际解决方案: ```python def build_prefix_sum(matrix): rows = len(matrix) cols = len(matrix[0]) if matrix else 0 prefix_sum = [[0]*(cols+1) for _ in range(rows+1)] for i in range(1,rows+1): for j in range(1,cols+1): prefix_sum[i][j]=matrix[i-1][j-1]+\ prefix_sum[i-1][j]+ \ prefix_sum[i][j-1]- \ prefix_sum[i-1][j-1] return prefix_sum def query_submatrix_sum(prefix_sum,x1,y1,x2,y2): """Query sum of elements within sub-matrix defined by top-left (x1,y1), bottom-right(x2,y2).""" return prefix_sum[x2+1][y2+1]-prefix_sum[x1][y2+1]-prefix_sum[x2+1][y1]+prefix_sum[x1][y1] # Example usage: input_matrix=[[3,0,1,4],[2,8,7,5],[4,6,9,1]] ps=build_prefix_sum(input_matrix) print(query_submatrix_sum(ps,1,1,2,2)) # Output should be 30 which is the sum inside this area. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值