Caffe框架
深度学习caffe框架的学习
浩瀚之水_csdn
路漫漫其修远兮,吾将上下而求索,立刻行动,坚持,努立
展开
-
SqueezeNet
虽然网络性能得到了提高,但随之而来的就是效率问题(AlexNet VGG GoogLeNet Resnet DenseNet)效率问题主要是模型的存储问题和模型进行预测的速度问题.Model Compression: 从模型权重数值角度压缩 从网络架构角度压缩 对于效率问题,通常的方法即在已经训练好的模型上进行压缩,使得网络携带更少的网络参数,从而解决内存问题,同时解决...转载 2019-04-18 19:11:36 · 240 阅读 · 0 评论 -
CNN模型之SqueezeNet
作者: 叶 虎编辑:赵一帆01引言SqueezeNet是Han等提出的一种轻量且高效的CNN模型,它参数比AlexNet少50x,但模型性能(accuracy)与AlexNet接近。在可接受的性能下,小模型相比大模型,具有很多优势:更高效的分布式训练,小模型参数小,网络通信量减少; 便于模型更新,模型小,客户端程序容易更新; 利于部署在特定硬件如FPGA,因为其内存受限...转载 2019-04-18 18:35:14 · 743 阅读 · 0 评论 -
学习Caffe(二)使用Caffe:Caffe加载模型+Caffe添加新层+Caffe finetune
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014230646/article/details/51934150如何使用CaffeCaffe教程(http://robots.princeton.edu/courses/COS598/2015sp/slides/Caffe/caffe_tutorial.pdf)预备知识Googl...转载 2018-09-04 12:00:13 · 1099 阅读 · 0 评论 -
caffe之特征图可视化及特征提取
上一篇博客,介绍了怎么对训练好的model的各层权重可视化,这篇博客,我们介绍测试图片输入网络后产生的特征图的可视化记得上篇中,我们是写了一个新的文件test.cpp,然后编译运行那个文件的,这是因为权重可视化,是不需要网络的前向传播,只要加载model就好了,而我们如果需要可视化特征图,那就必须进行网络的前向传播了,所以,这次,我们对caffe根目录下的examples/cpp_classi...转载 2018-08-25 21:28:00 · 2904 阅读 · 0 评论 -
caffe模型weights&featureMap 可视化(c++)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_14845119/article/details/74931602caffe模型在训练完成后,会生成一个*.caffemodel的文件,在运行的时候,直接调用caffe就可以读取其中的相应权值参数。但是如果用一个第三方软件打开这个,却是不可以可视化的二值乱码。 将模型中的参数导出,可...转载 2018-08-24 14:04:44 · 374 阅读 · 0 评论 -
caffe loss一直nan什么情况
1、http://blog.csdn.net/kuaitoukid/article/details/421209612、http://blog.csdn.net/huangynn/article/details/52947894梯度爆炸原因:梯度变得非常大,使得学习过程难以继续现象:观察log,注意每一轮迭代后的loss。loss随着每轮迭代越来越大,最终超过了浮点型表示的范围,就变成了NaN...转载 2018-06-26 10:55:01 · 440 阅读 · 0 评论 -
tensorflow2caffe(1) : caffemodel解析,caffemodel里面到底记录了什么?
在本文正式开始之前,笔者要先和各位读者朋友们道个歉。因为身为研一小白的笔者实在身不由己,除了各种任务之外,还要应付繁忙的课程,忙于各种考试像一只咸鱼。因此耽误了博文的撰写,对不起各位读者朋友,笔者在忙完6月进入研二之后一定再接再厉。下面开始干货~ 本篇还是一个插播的博客,旨在向大家分享caffemodel里面记录的信息。在我们使用caffe框架训练网络时,最终总会生成一个caffemod...转载 2018-04-01 08:43:56 · 677 阅读 · 0 评论 -
Caffe学习系列(19): 绘制loss和accuracy曲线
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制。 In [1]:#加载必要的库import numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport sys,os,caffe#设置当前目录caffe_root = '/home/bnu/caffe/' sys.path.ins...转载 2018-04-01 08:06:31 · 285 阅读 · 0 评论 -
Caffe学习系列(17):模型各层数据和参数可视化
先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。In [1]:#加载必要的库import numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport sys,os,caffeIn [2]:#设置当前目录,判断模型是否训练...转载 2018-04-01 08:04:39 · 289 阅读 · 1 评论 -
使用pycaffe读取caffemodel参数(保存到txt文件)
import struct import numpy as npimport sysdef add_path(path): if path not in sys.path: sys.path.insert(0, path)add_path('./python/')import caffe np.set_printoptions(threshold='nan')MODEL_FI...原创 2018-04-01 07:38:34 · 1041 阅读 · 0 评论 -
使用pycaffe读取caffemodel参数(保存到txt文件)
#!/usr/bin/env python # 引入“咖啡” import caffe import numpy as np # 使输出的参数完全显示 # 若没有这一句,因为参数太多,中间会以省略号“……”的形式代替 np.set_printoptions(threshold='nan') # deploy文件 MODEL_FILE = 'caffe_deploy.转载 2018-01-19 11:40:07 · 3806 阅读 · 0 评论 -
caffe.pb.h丢失问题:
/home/wuliwei/caffe/include/caffe/blob.hpp:9:34: fatal error: caffe/proto/caffe.pb.h: No such file or directory #include "caffe/proto/caffe.pb.h"12解决方法: 用protoc从caffe/src/caffe/proto/caffe.proto生成caf转载 2018-01-18 15:14:08 · 317 阅读 · 0 评论 -
使用pycaffe读取caffemodel参数(保存到txt文件)
#!/usr/bin/env python # 引入“咖啡” import caffe import numpy as np # 使输出的参数完全显示 # 若没有这一句,因为参数太多,中间会以省略号“……”的形式代替 np.set_printoptions(threshold='nan') # deploy文件 MODEL_FILE = 'caffe_deploy.转载 2017-11-18 11:04:30 · 1039 阅读 · 0 评论 -
Dropout_layer.cpp(防止过拟合)
dropout层的作用是防止训练的时候过拟合。在训练的时候,传统的训练方法是每次迭代经过某一层时,将所有的结点拿来做参与更新,训练整个网络。加入dropout层,我们只需要按一定的概率(retaining probability)p 来对weight layer 的参数进行随机采样,将被采样的结点拿来参与更新,将这个子网络作为此次更新的目标网络。这样做的好处是,由于随机的让一些节点不工作了,因此可转载 2017-08-10 10:29:02 · 283 阅读 · 0 评论 -
windows下VS2015配置caffe
Windows下VS2015配置caffe,是一件其实挺简单但是坑特别多的事情,稍有不慎就爬不出来,写博客来记录最后在老师帮助下才配置成功的经验(严格按照老师的教程一步也不能错才行),当然我写得也详细一点,也让大家少掉坑。前提(开发环境):1、安装完成VS2015 2、安装完成anaconda 2 ,里面有pyt转载 2017-12-16 16:55:59 · 3587 阅读 · 0 评论 -
caffe 在 windows 下的配置(scripts\build_win.cmd)
官网配置文档见:GitHub - BVLC/caffe at windows1. windows 设置requirements: visual studio 2013/2015CMake >= 3.4(注意添加 cmake 的 bin 路径到 Path 环境变量中,保证命令行可以找到 cmake.exe)2. 配置和编译 caffe进入 wind转载 2017-12-16 16:43:57 · 1578 阅读 · 0 评论 -
winsows10下用ninja编译配置caffe
出于好奇自己想在windows上配置一下caffe环境,于是在网上找了一些教程。发现都和caffe官网上的说法有些不同,于是抱着作死的心态去按照官网上的做法走了一遍。自己也是新手,还有许多不明白的地方,随手mark一下。参考:https://github.com/BVLC/caffe/tree/windowsRequirementsVisual转载 2017-12-16 16:43:19 · 687 阅读 · 0 评论 -
Windows 10 & Visual Studio 2015 配置 Caffe
笔记本是双显卡,读研的时候成功的在Ubuntu下配置好了一次Caffe,并且完成了深度学习的实验,前不久因为一个小的问题,导致NVIDIA驱动出了问题,以后再也没有在Ubuntu下成功配置好Caffe,不浪费时间在双显卡配置上了,转移到Windows下,正好也方便整理笔记。首先是我的安装过程中需要注意的问题,其实大部分问题都是阅读完整个文档都可以解决,但是通常不喜欢阅读英文文档,或者一眼带转载 2017-12-16 16:42:24 · 315 阅读 · 0 评论 -
caffe-builder相关资料
Caffe学习笔记 第一部分 - Windows*下BVLC Caffe的安装与配置https://software.intel.com/zh-cn/node/753918?language=esCaffe的各个版本简介https://blog.csdn.net/haoji007/article/details/90756159Caffe-windows入门学习,编译、训练、测试详...原创 2019-12-21 12:30:41 · 2122 阅读 · 0 评论 -
Caffe-windows入门学习,编译、训练、测试详细教程
####目录结构一. 准备工作二. 编译2.1、开启相关caffe版本的编译开关配置内容2.2、手动更改或者指定版本对应编译器目录2.3、下载依赖文件dependencies文件到指定目录2.4、编译三. MNIST手写体字符识别(C++)3.1、MNIST数据集下载3.2、转换数据格式3.3、训练和测试数据集3.4、测试单张图片四. Matlab Demo...转载 2019-12-21 12:26:29 · 2249 阅读 · 0 评论 -
ubuntu16.04配置py-faster-rcnn
在ubuntu16.04下编译安装了py-faster-rcnn。如果你发现本文写的有不对或不清晰的地方,还请在文末留言指出,谢谢!主要步骤包括:安装cuda/cudnn,换apt源,装开源显卡驱动,装caffe依赖的apt包和python包,下载py-faster-rcnn代码,编译代码。注意一点:不要用cuda安装包自带的显卡驱动,装好cuda后用apt-get装源里的最新驱动,否则很转载 2017-08-16 13:58:45 · 708 阅读 · 0 评论 -
2015.08.17 Ubuntu 14.04+cuda 7.5+caffe安装配置
2016.06.10 update cuda 7.5 and cudnn v52015.10.23更新:修改了一些地方,身边很多人按这个流程安装,完全可以安装折腾了两个星期的caffe,windows和ubuntu下都安装成功了。其中windows的安装配置参考官网推荐的那个blog,后来发现那个版本的caffe太老,和现在的不兼容,一些关键字都不一样,果断回到Linux下。这里记录一下我转载 2017-08-09 10:41:39 · 346 阅读 · 0 评论 -
深度学习之caffe1——软件配置与测试
caffe的编译配置真的是很让人头疼啊,不知道试过多少次了~~~重装系统了七八次,搞得Linux的一些常用命令倒是很熟悉了~~~我有洁癖~~~某一个点上出了错,我一定要把它搞好了,再重新来一次,我怕会因为某一点的小错误会影响到其它重要的地方。。。(有同感的默默在心里举个爪~~~^_^~~~)又折腾了好几次,参考了很多的博客,总结出一整套的安装配置流程!开始:转载 2017-08-09 11:14:41 · 497 阅读 · 0 评论 -
Deep Learning---caffe模型参数量(weights)计算
Draw_convnet这幅图是通过开源的工具draw_convnet(https://github.com/gwding/draw_convnet)生成的。在清楚整个前向计算网络中的每一个层的输入输出以及参数设置后可以自己手动画出计算图出来,对于参数量计算就很直观了。feature map大小计算输入:N0*C0*H0*W0 输出:N1*C1*H1*W1 输出的featur...转载 2017-08-16 16:21:10 · 3223 阅读 · 0 评论 -
封装caffe-windows-master为动态链接库
2016.12.14:代码已知bug:由于类中有全局变量,声明多个对象时,全局变量指向会改变,造成结果错误并且有内存泄漏。因此该份代码只能声明一个Classifier对象。新的代码已经重新封装,并且做成多标签输出,下载地址:http://download.csdn.net/detail/sinat_30071459/9715053主要修改:http://blog.c转载 2017-08-17 09:46:05 · 529 阅读 · 1 评论 -
封装caffe-windows-cpu(支持模型有多个输出)
注意:该版本为CPU版本。用到的caffe-windows来自:https://github.com/happynear/caffe-windows先下载caffe-windows,解压;然后下载第三方库:https://pan.baidu.com/s/1eStyfrc 解压到caffe-windows-master,看起来是这样:caffe-windows-mast转载 2017-08-17 09:47:23 · 297 阅读 · 0 评论 -
封装caffe-windows-gpu(支持模型有多个输出)
之前封装的代码只能有一个输出:http://blog.csdn.net/sinat_30071459/article/details/51823390并且有点问题,现在作了修改,模型可以有多个输出(当然也可以只有一个输出),可用于做图片的多属性分类,如:这个例子有四个输出;代码输出的分类结果为:[plain] view plain c转载 2017-08-17 09:48:51 · 221 阅读 · 0 评论 -
Windows下用VS2013加载caffemodel做图像分类
本文假设你已经安装CUDA,CUDA版本是7.5。1.编译caffe的Windows版本happynear的博客已经介绍了如何在windows下编译caffe,这里把我自己编译的过程记录下来,也算是做做笔记,方便以后查看。1.1下载caffe-windows-master下载地址:caffe-windows-master1.2下载第三方库下载地址转载 2017-08-17 09:49:38 · 575 阅读 · 0 评论 -
caffe基础(8):draw_net.py绘制网络结构
1、安装pydot[plain] view plain copysudo apt-get install python-pydot 2、安装graphviz[plain] view plain copysudo apt-get instll graphviz转载 2017-08-17 09:50:19 · 235 阅读 · 0 评论 -
caffe基础(7): 命令行解析
caffe的运行提供三种接口:c++接口(命令行)、Python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文转载 2017-08-17 09:51:36 · 213 阅读 · 0 评论 -
Faster-RCNN+ZF用自己的数据集训练模型(Python版本)
说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同。下面是训练前的一些修改。(做数据集的过程可以看http://blog.csdn.net/sinat_30071459/article/details/50723212)Faster-RCNN源码下载地址:Matlab版本:https://github.com/ShaoqingRen/fa转载 2017-08-17 09:52:41 · 307 阅读 · 0 评论 -
Faster R-CNN教程
最后更新日期:2016年4月29日本教程主要基于python版本的faster R-CNN,因为python layer的使用,这个版本会比matlab的版本速度慢10%,但是准确率应该是差不多的。目前已经实现的有两种方式:Alternative trainingApproximate joint training推荐使用第二种,因为第二种使用的显存更小,而且训练会转载 2017-08-17 09:55:20 · 267 阅读 · 0 评论 -
深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。如果读者是初接触CNN,建议可以先看一看“Deep Learning(深度学习)学习转载 2017-08-10 09:40:33 · 596 阅读 · 0 评论 -
NVIDIA DIGITS-2.0 + Ubuntu 14.04 + CUDA 7.0 + cuDNN 7.0 + Caffe 0.13.0环境配置
引言DIGITS简介DIGITS特性资源信息说明DIGITS安装软硬件环境硬件环境软件环境操作系统安装DIGITS安装前准备安装CUDA70deb方式安装cuDNN70安装Caffe-0130安装DIGITS启动DIGITS配置DIGITS使用DIGITSdigits官方转载 2017-08-03 08:52:36 · 1200 阅读 · 0 评论 -
windows平台下caffe可视化配置
平台环境windows8.1,visual studio 2013 ,Anaconda2(本文安装路径为C:\Anaconda2),暂时无GPU支持步骤1.编译pycaffe从https://github.com/happynear/caffe-windows下载caffe,编译过程不再赘述,只讲pycaffe编译过程配置。配置python和numpy所需的头文件和转载 2017-08-03 08:53:27 · 701 阅读 · 0 评论 -
NVIDIA DIGITS 5.1-dev学习笔记之安装过程记录:Windows10 x64位系统 、 MicroSoft Caffe Master、CUDA 8.0 、Python 2.7
今天成功在windows下配置成功了英伟达的DIGITS,记录一下问题解决过程。 环境简介: Windows10_x64 CUDA 8.0 / CUDA 7.5 Python2.7 Microsoft-Caffe-master Github DIGITS: https://github.com/NVIDIA/DIGITS/blob/master/docs/BuildDigitsWindow转载 2017-08-03 09:35:19 · 1592 阅读 · 0 评论 -
faster_rcnn c++版本的 caffe 封装(1)
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/由于需要把FasterRCNN做的工程化,因此这里需要对Caffe进行封装。其实封装听起来感觉很高深的样子,其实就是将自己在caffe上再调用的接口做成一个动态库,同时将Caffe的库连着Caffe的那些库依赖一起做成自己工程的库依赖就可以了。如果你只是直接转载 2017-08-17 10:30:37 · 362 阅读 · 0 评论 -
faster_rcnn c++版本的 caffe 封装,动态库(2)
摘要: 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/github上的代码链接,求给星星:) https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus在上一篇文章中,我们是将对caffe的调用隔离了出来,可以说相当于原来caf转载 2017-08-17 10:31:14 · 378 阅读 · 1 评论 -
Caffe源码导读(7):LRN层的实现
LRN全称为Local Response Normalization,即局部响应归一化层,具体实现在CAFFE_ROOT/src/caffe/layers/lrn_layer.cpp和同一目录下lrn_layer.cu中。该层需要参数有:norm_region: 选择对相邻通道间归一化还是通道内空间区域归一化,默认为ACROSS_CHANNELS,即通道间归一化;local_s转载 2017-08-10 10:24:50 · 232 阅读 · 0 评论 -
安装Windows digits问题列表
问题1:no model named flask.net.socketiopip install flask-socketio问题2:No module named flask.ext.wtfpip install Flask-WTF问题3:ImportError: No module named skfmmpip install scikit-fmm原创 2017-08-03 11:33:17 · 1336 阅读 · 0 评论