
深度学习基础知识
文章平均质量分 84
深度学习-深度学习基础知识
浩瀚之水_csdn
路漫漫其修远兮,吾将上下而求索,立刻行动,坚持,努立
展开
-
Ultralytics 框架中Predictor类解析
通过灵活配置 Predictor 参数,您可以高效完成从简单图像检测到实时视频分析的复杂任务。原创 2025-03-31 08:12:51 · 1181 阅读 · 0 评论 -
Ultralytics 框架中的 model.tune() 方法
Ultralytics 框架中的 model.tune() 方法 是一种基于遗传算法(Genetic Algorithm, GA)的超参数自动优化工具,旨在通过智能搜索找到最佳超参数组合,从而提升模型性能。原创 2025-03-29 13:32:19 · 714 阅读 · 0 评论 -
Ultralytics 框架中 settings 参数的详细解析与使用指南
Ultralytics 库提供了一个强大的设置管理系统,以便对实验进行精细控制。通过使用位于 ultralytics.utils 模块中的 SettingsManager,用户可以轻松访问和更改他们的设置。这些设置存储在一个 YAML 文件中,可以在 Python 环境中直接查看或修改,也可以通过命令行界面(CLI)进行操作。原创 2025-03-29 11:23:30 · 772 阅读 · 0 评论 -
Ultralytics 框架中 model.train() 方法的核心参数详解与使用指南
Ultralytics 框架中 model.train() 方法的核心参数详解与使用指南,原创 2025-03-29 10:55:12 · 1100 阅读 · 0 评论 -
YOLOv11 损失函数解析
YOLOv11 在 YOLO 系列的持续演进中,通过 多模态损失协同优化、动态任务感知机制 和 超轻量化设计,实现了检测精度与推理效率的再突破。其损失函数设计融合了前沿的几何建模、分布学习与自监督技术,显著提升了复杂场景下的鲁棒性。原创 2025-03-28 09:54:13 · 2909 阅读 · 1 评论 -
YOLOv10 的损失函数解析
YOLOv10 在 YOLO 系列的演进中进一步优化了任务解耦与动态平衡策略,通过 多模态损失融合、自适应样本分配 和 轻量化设计,显著提升了检测精度与推理效率。原创 2025-03-28 09:42:32 · 820 阅读 · 0 评论 -
YOLOv9 损失函数解析
YOLOv9作为YOLO系列的最新成员,在损失函数设计上进行了多项创新,重点优化了动态任务对齐机制、多模态定位损失融合以及跨层级梯度协同,进一步提升了检测精度与训练效率。原创 2025-03-28 09:25:41 · 844 阅读 · 1 评论 -
YOLOv8的损失函数解析
YOLOv8的损失函数在继承前代设计的基础上,进一步优化了动态任务对齐机制、解耦式定位损失(DFL + CIoU)以及多阶段蒸馏策略,实现了更高效的正样本匹配与更精确的边界框回归。原创 2025-03-28 09:17:33 · 2389 阅读 · 1 评论 -
YOLOv7的损失函数解析
YOLOv7通过EIOU Loss提升定位精度、Varifocal Loss优化分类任务、OTA++动态标签分配增强样本效率,配合重参数化结构与多层级监督,实现了精度与速度的突破性平衡。其设计在复杂场景(如密集小目标、遮挡目标)下表现尤为突出,是目前工业级目标检测的首选架构之一。原创 2025-03-28 09:11:19 · 794 阅读 · 0 评论 -
YOLOv6的损失函数解析
YOLOv6通过SIoU Loss优化定位精度、SimOTA动态分配提升样本利用效率、知识蒸馏增强模型泛化性,形成了更鲁棒的损失计算体系。其设计尤其适合工业场景下的密集目标检测,在精度与速度的平衡上达到SOTA水平,是YOLO系列的重要演进方向。原创 2025-03-28 09:10:49 · 345 阅读 · 0 评论 -
LOCAL_RANK 的注入原理
在 PyTorch 分布式训练中,LOCAL_RANK 的注入机制是框架自动管理多进程 GPU 分配的核心环节。原创 2025-03-25 11:37:01 · 875 阅读 · 0 评论 -
随机数生成器(RNG)种子
随机数生成器(Random Number Generator, RNG)种子(Seed)是控制随机数生成过程的初始值。通过固定种子,可以确保生成的随机数序列完全可复现,这在科学实验、算法调试和机器学习中至关重要。原创 2025-03-25 14:29:26 · 1001 阅读 · 0 评论 -
Focal Loss解决类别不平衡的损失函数
Focal Loss解决类别不平衡的损失函数原创 2025-03-27 16:53:01 · 299 阅读 · 0 评论 -
Focal EIoU Loss损失函数解析
Focal EIoU Loss 是目标检测中结合 EIoU Loss 和 Focal Loss 思想的混合损失函数,旨在通过动态调整难易样本的权重,解决边界框回归中的样本不平衡问题,进一步提升检测精度,尤其适用于小目标、遮挡目标等困难场景。原创 2025-03-27 16:45:39 · 751 阅读 · 0 评论 -
SIoU Loss(Shape-Aware Intersection over Union Loss)损失函数解析
SIoU Loss 是目标检测中用于边界框回归的高级损失函数,在现有IoU系列损失的基础上引入了角度惩罚项,显式优化预测框与真实框的方向对齐,特别适用于旋转目标检测(如航拍图像中的车辆、卫星影像中的建筑等)。原创 2025-03-27 16:41:27 · 794 阅读 · 0 评论 -
EIoU Loss(Efficient Intersection over Union Loss)损失函数解析
EIoU Loss 是CIoU Loss的改进版本,通过分解宽高损失为独立项,简化计算并提升优化效率,同时保持对预测框形状的精准控制。EIoU Loss广泛应用于实时目标检测模型(如YOLO系列),在高精度和高效性之间取得了平衡。原创 2025-03-27 16:08:28 · 1177 阅读 · 0 评论 -
CIoU Loss(Complete Intersection over Union Loss)损失函数解析
CIoU Loss 是目标检测中用于边界框回归的高级损失函数,在DIoU的基础上进一步引入长宽比惩罚项,联合优化重叠面积、中心点距离和形状差异,显著提升定位精度。原创 2025-03-27 16:06:17 · 1257 阅读 · 0 评论 -
DIoU Loss(Distance Intersection over Union Loss)损失函数解析
DIoU Loss 是IoU Loss的改进版本,在GIoU的基础上进一步引入中心点距离惩罚项,直接优化预测框与真实框的中心点距离,从而加速收敛并提升定位精度。DIoU Loss广泛应用于目标检测的边框回归任务,尤其在密集目标场景下表现优异。原创 2025-03-27 16:02:55 · 669 阅读 · 0 评论 -
GIoU Loss(Generalized Intersection over Union Loss)损失函数解析
GIoU Loss 是IoU Loss的改进版本,旨在解决基础IoU Loss在预测框与真实框无重叠时梯度消失的问题。通过引入最小闭合区域,GIoU Loss能够有效优化非重叠框的定位,同时保持尺度不变性,广泛应用于目标检测的边框回归任务。原创 2025-03-27 15:58:50 · 975 阅读 · 0 评论 -
IoU Loss损失函数解析
IoU Loss(Intersection over Union Loss)是一种直接优化预测边界框与真实边界框交并比的损失函数,广泛应用于目标检测的边框回归任务。相较于传统的L1/L2 Loss,IoU Loss能够更好地反映预测框与真实框之间的几何重叠关系,从而提升定位精度。原创 2025-03-27 15:49:33 · 694 阅读 · 0 评论 -
YOLOv5损失函数的解析
YOLOv5通过CIoU Loss提升定位精度、BCE Loss支持多标签分类、多尺度加权优化目标检测,形成了高效且鲁棒的损失计算体系。其设计兼顾了算法复杂度与检测性能,是目标检测领域的重要实践参考。原创 2025-03-27 14:13:18 · 1975 阅读 · 0 评论 -
YOLOv4 损失函数解析
YOLOv4的损失函数通过CIoU Loss的几何联合优化、动态IoU置信度匹配及多标签分类增强,实现了检测精度与训练效率的平衡。原创 2025-03-27 13:57:13 · 558 阅读 · 0 评论 -
YOLOv3 损失函数的详细解析
YOLOv3在目标检测领域取得了显著进步,其损失函数设计融合了多尺度预测、改进的Anchor机制及分类策略。原创 2025-03-27 09:56:07 · 547 阅读 · 0 评论 -
YOLOv2损失函数的详细解析
YOLOv2通过Anchor Box机制、动态IoU置信度和宽高权重调整,显著提升了小目标检测能力与定位精度(mAP从63.4%提升至76.8%)。其损失函数设计体现了从“直接坐标回归”到“几何偏移预测”的范式转变,为后续YOLO系列(如v3的二元交叉熵、v4的CIoU)奠定了基础。尽管分类损失仍采用MSE,但其整体架构优化使YOLOv2成为实时检测领域的里程碑。原创 2025-03-27 09:41:10 · 879 阅读 · 0 评论 -
YOLO中的置信度(Confidence)概念
YOLO中的置信度(Confidence)是衡量预测边界框(Bounding Box)是否包含目标以及定位准确性的关键指标。原创 2025-03-27 08:49:38 · 1366 阅读 · 0 评论 -
损失函数(Loss Function)的全面综述
损失函数是连接模型预测与优化目标的桥梁,其设计直接影响模型性能。未来随着 AutoML 和因果推理的发展,损失函数将更加自动化、自适应化,并在复杂任务(如多模态学习、强化学习)中发挥更大作用。原创 2025-03-26 10:13:18 · 1265 阅读 · 0 评论 -
pytorch 损失函数
计算出来的结果已经对mini-batch取了平均。一、损失函数列表创建一个衡量输入x模型预测输出)和目标y之间差的绝对值的平均值的标准。x和y可以是任意形状,每个包含n个元素。对n个元素对应的差值的绝对值求和,得出来的结果除以n。如果在创建L1Loss实例的时候在构造函数中传入,那么求出来的绝对值的和将不会除以n创建一个衡量输入x模型预测输出)和目标y之间均方误差标准。x和y可以是任意形状,每个包含n个元素。对n个元素对应的差值的绝对值求和,得出来的结果除以n。如果在创建MSELoss。原创 2024-09-05 16:09:42 · 1503 阅读 · 0 评论 -
预训练(pre-train)模型及对于深度网络的意义
定义预训练模型是指在大量数据上预先训练好的神经网络模型,这些模型可以被用于初始化新模型的权重,或者作为特征提取器,以提高新任务的学习效率和性能。作用迁移学习:预训练模型可以将在大规模数据集上学到的知识迁移到新的任务或数据集上,从而提高新任务的性能。数据效率:预训练模型可以在新任务上减少对训练数据的需求,对于数据稀缺的任务尤为有效。计算效率:使用预训练模型可以减少从头开始训练模型所需的时间和资源。常见类型语言模型:如BERT、GPT系列,用于自然语言处理任务。原创 2018-12-15 13:46:28 · 4247 阅读 · 0 评论 -
标准卷积、分组卷积、深度卷积、深度可分离卷积区别
标准卷积与分组卷积在卷积神经网络中具有显著的区别,这些区别主要体现在卷积操作方式、参数数量、计算量、模型表示能力以及适用场景上。原创 2025-02-25 18:14:16 · 1159 阅读 · 0 评论 -
深入浅出之注意力机制(YOLO)
它主要有两个方面:一是决定需要关注输入的哪部分,二是分配有限的信息处理资源给重要的部分。该机制可以应用于任何类型的输入,而不管其形状如何。在计算能力有限的情况下,注意力机制是解决信息超载问题的主要手段的一种资源分配方案,即将计算资源分配给更重要的任务。原创 2025-01-23 11:28:38 · 1450 阅读 · 0 评论 -
深入浅出之深度卷积(DW)
深度卷积层(Depthwise Convolutional Layer)是卷积神经网络(CNN)中的一种卷积层类型,其核心特性是对输入特征图的每一个通道分别进行卷积操作。原创 2025-01-23 10:04:06 · 1364 阅读 · 0 评论 -
深入浅出之深度学习评价指标
准确率的计算公式为:准确率 = 正确预测的样本数 / 总样本数,即(TP+TN)/(TP+TN+FP+FN)。原创 2024-10-30 19:08:53 · 1814 阅读 · 0 评论 -
深入浅出之卷积
定义分组卷积将输入特征图和卷积核在通道维度上分成多个组,然后对每个组分别进行卷积操作。特点降低参数量和计算量:通过将计算分散到多个小组中进行,可以显著降低参数量和计算量。提升模型性能:分组卷积可以看作是一种正则化手段,有助于防止模型过拟合。同时,通过分组卷积,模型可以学习到更加丰富的特征表示,从而提升模型的性能。通道稀疏连接:与标准卷积的全通道连接相比,分组卷积是一种通道稀疏连接方式,这有助于模型学习到更加局部和特定的特征。原创 2024-10-23 13:47:33 · 2383 阅读 · 0 评论 -
深入浅出之深度可分离卷积
卷积核是一个小的矩阵(或张量),其大小通常是奇数(如3x3、5x5等),用于在输入特征图上进行滑动窗口操作。原创 2024-09-26 09:44:15 · 7683 阅读 · 0 评论 -
协方差矩阵的几何解释
A geometric interpretation of the covariance matrixhttp://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/译文:http://demo.netfoucs.com/u010182633/article/details/45937051 介...转载 2018-07-30 14:37:50 · 318 阅读 · 0 评论 -
十三种基于直方图的图像全局二值化算法原理、实现、代码及效果。
图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。 在这些庞大的分类方法中,基于直方图的全局二值算法占有了绝对的市场份额,这些转载 2017-09-23 09:44:53 · 582 阅读 · 0 评论 -
方差,协方差、标准差,与其意义
协方差的意义和计算公式协方差的意义和计算公式学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合转载 2017-11-30 15:03:03 · 676 阅读 · 0 评论 -
最小二乘法原理及极值点判定
最小二乘法的本质原理 本文主要以最简单的二元线性函数为基础,阐述最小二乘法的原理,事实上,最小二乘法可以更广泛地应用于非线性方程中,但本文以介绍为主,希望能以最简单的形式,使读者能够掌握最小二乘法的意义。在物理实验数据统计时,我们会记录一些数据,记做数据x和数据y。但是,在记录数据后,我们依然不知道x和y 的具体关系。例如,测算男人手掌面积和身高的关系,我们会得到转载 2017-10-29 16:33:57 · 5980 阅读 · 2 评论 -
主成分变换的实现
本小节通过一个算例验证一下之前的推导。在前面给出的例子中,各点在原始的由于方程是齐次的,所以不独立。因为系数矩阵有零行列式,所以方程有非无效解。从两个方程的任何一个可见现在考虑该结论该如何解释。特征向量g1和g2是在原坐标系中用来定义主成分轴的向量,如图6-20所示,其中,e1和e2分别是水平和垂直的方向向量。显而易见,这些数据在新坐标系中是非相关的。该新坐标系是原转载 2017-11-30 15:07:03 · 3463 阅读 · 0 评论 -
深度学习之图像处理---七级浮屠
用深度学习玩图像的 七 重关卡第一个重境界: 图像识别我们进化的方向,也就是用更高级的网络结构取得更好的准确率,比如像下图这样的残差网络(已经可以在猫狗数据集上达到99.5%以上准确率)。分类做好了你会有一种成为深度学习大师,拿着一把斧子眼镜里都是钉子的幻觉。 分类问题之所以简单, 一要归功于大量标记的图像, 二是分类是一个边界非常分明的问题, 即使机器不知道什么是猫什么是狗, 看出点区别...转载 2020-01-19 10:18:51 · 952 阅读 · 1 评论