深度学习基础知识
文章平均质量分 80
深度学习-深度学习基础知识
浩瀚之水_csdn
路漫漫其修远兮,吾将上下而求索,立刻行动,坚持,努立
展开
-
深入浅出之深度学习评价指标
准确率的计算公式为:准确率 = 正确预测的样本数 / 总样本数,即(TP+TN)/(TP+TN+FP+FN)。原创 2024-10-30 19:08:53 · 786 阅读 · 0 评论 -
重温经典之SVM
支持向量是指在SVM中,距离分类超平面最近的那些训练样本点。这些点对于构建SVM模型具有关键作用,因为它们直接决定了分类超平面的位置和方向。在二分类问题中,支持向量通常位于两个类别的边界上,即分类超平面的两侧。核函数是SVM中的核心概念,它允许SVM在高维特征空间中处理非线性问题。通过选择合适的核函数和参数,可以显著提高SVM的性能。在实际应用中,需要根据数据特性和模型需求来选择合适的核函数。超平面是n维欧氏空间中余维度等于一的线性子空间,也就是(n-1)维的线性子空间。在二维空间中,超平面就是一条直线;原创 2024-10-23 21:09:12 · 1008 阅读 · 0 评论 -
深入浅出之卷积
定义分组卷积将输入特征图和卷积核在通道维度上分成多个组,然后对每个组分别进行卷积操作。特点降低参数量和计算量:通过将计算分散到多个小组中进行,可以显著降低参数量和计算量。提升模型性能:分组卷积可以看作是一种正则化手段,有助于防止模型过拟合。同时,通过分组卷积,模型可以学习到更加丰富的特征表示,从而提升模型的性能。通道稀疏连接:与标准卷积的全通道连接相比,分组卷积是一种通道稀疏连接方式,这有助于模型学习到更加局部和特定的特征。原创 2024-10-23 13:47:33 · 1379 阅读 · 0 评论 -
深入浅出之深度可分离卷积
卷积核是一个小的矩阵(或张量),其大小通常是奇数(如3x3、5x5等),用于在输入特征图上进行滑动窗口操作。原创 2024-09-26 09:44:15 · 1584 阅读 · 0 评论 -
协方差矩阵的几何解释
A geometric interpretation of the covariance matrixhttp://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/译文:http://demo.netfoucs.com/u010182633/article/details/45937051 介...转载 2018-07-30 14:37:50 · 302 阅读 · 0 评论 -
十三种基于直方图的图像全局二值化算法原理、实现、代码及效果。
图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。 在这些庞大的分类方法中,基于直方图的全局二值算法占有了绝对的市场份额,这些转载 2017-09-23 09:44:53 · 559 阅读 · 0 评论 -
方差,协方差、标准差,与其意义
协方差的意义和计算公式协方差的意义和计算公式学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合转载 2017-11-30 15:03:03 · 593 阅读 · 0 评论 -
最小二乘法原理及极值点判定
最小二乘法的本质原理 本文主要以最简单的二元线性函数为基础,阐述最小二乘法的原理,事实上,最小二乘法可以更广泛地应用于非线性方程中,但本文以介绍为主,希望能以最简单的形式,使读者能够掌握最小二乘法的意义。在物理实验数据统计时,我们会记录一些数据,记做数据x和数据y。但是,在记录数据后,我们依然不知道x和y 的具体关系。例如,测算男人手掌面积和身高的关系,我们会得到转载 2017-10-29 16:33:57 · 5724 阅读 · 2 评论 -
主成分变换的实现
本小节通过一个算例验证一下之前的推导。在前面给出的例子中,各点在原始的由于方程是齐次的,所以不独立。因为系数矩阵有零行列式,所以方程有非无效解。从两个方程的任何一个可见现在考虑该结论该如何解释。特征向量g1和g2是在原坐标系中用来定义主成分轴的向量,如图6-20所示,其中,e1和e2分别是水平和垂直的方向向量。显而易见,这些数据在新坐标系中是非相关的。该新坐标系是原转载 2017-11-30 15:07:03 · 3426 阅读 · 0 评论 -
深度学习之图像处理---七级浮屠
用深度学习玩图像的 七 重关卡第一个重境界: 图像识别我们进化的方向,也就是用更高级的网络结构取得更好的准确率,比如像下图这样的残差网络(已经可以在猫狗数据集上达到99.5%以上准确率)。分类做好了你会有一种成为深度学习大师,拿着一把斧子眼镜里都是钉子的幻觉。 分类问题之所以简单, 一要归功于大量标记的图像, 二是分类是一个边界非常分明的问题, 即使机器不知道什么是猫什么是狗, 看出点区别...转载 2020-01-19 10:18:51 · 930 阅读 · 0 评论 -
OpenCV 距离变换的笔记
目前正在学习里面有提到距离变换计算,以此笔记记录生活。 距离变换的定义 :计算图像中像素点到最近零像素点的距离,也就是零像素点的最短距离。Mat srcImage = imread("/Users/hanoi/Desktop/hand.jpg",0);Mat dist_image(size,CV_32FC1);distanceTransform(srcImage, dist_image转载 2017-12-29 14:11:35 · 505 阅读 · 0 评论 -
自适应阈值大津法(OTSU)介绍及代码实现
算法原理最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定法,又叫大津法,简称OTSU。我用最简单的方式解释一下算法原理:这个算法的思想就是假设阈值T将图像分成了前景和背景两个部分。求出这两个部分的类间方差:前景像素个数占比x(前景平均灰度 - 全图平均灰度)2 + 背景像素个数占比x(背景平均灰度 - 全图平均灰度)2将阈值从0~255遍历一次,使上述...转载 2019-11-15 21:16:43 · 1796 阅读 · 0 评论 -
PCA (主成分分析)详解 (写给初学者)
学习图像处理,无疑会涉及到降维的操作,而PCA是常用的降维算法,既然经常用到,所以需要抠明白才行啊~~ PCA(PrincipalComponents Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。 这时,我们通常的...转载 2018-07-30 15:01:48 · 95534 阅读 · 11 评论 -
图像处理常用边缘检测算子总结
不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免转载 2017-09-23 10:05:49 · 628 阅读 · 0 评论 -
主成分分析(PCA)原理详解
转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401一、PCA简介1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会。 在许多领域的研究与应用中,往往需要对反映事物的多个变量转载 2017-11-30 14:38:43 · 324 阅读 · 0 评论 -
学习迁移
学习迁移 编辑即一种学习对另一种学习的影响,它广泛地存在于知识、技能、态度和行为规范的学习中。任何一种学习都要受到学习者已有知识经验、技能、态度等的影响,只要有学习,就有迁移。迁移是学习的继续和巩固,又是提高和深化学习的条件,学习与迁移不可分割。中文名学习迁移外文名transfer of learning类 型技能方转载 2017-08-03 11:43:33 · 915 阅读 · 0 评论 -
图像处理基本算法 形状特征
形状特征 (一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性转载 2014-06-07 10:21:47 · 1565 阅读 · 0 评论 -
图像处理之均值滤波介绍及C算法实现
1 均值滤波介绍 滤波是滤波是将信号中特定波段频率滤除的操作,是从含有干扰的接收信号中提取有用信号的一种技术。 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(如3×3模板:以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身),再用模板中的全体像素的平均值来代替原来像素值。 均值滤波效果:平滑转载 2017-09-23 10:15:05 · 19660 阅读 · 3 评论 -
形态学图像处理学习笔记
一、基本概念1. 结构元:研究一幅图像中感兴趣特性所用的小集合或子图像,结构元基本形态是矩形、十字形和椭圆形,其选择和实际情况有关;2.腐蚀:假设我们有一图像A,以及一个结构元B,一个结构元定义一个中心点,B对A的腐蚀就是将结构元B滑过图像A,在图像A中完全包含B的区域。3.膨胀:即B对A的膨胀为,结构元B滑过图像A,膨胀后的图像为所有与结构元B有重叠的图像。4.开运算:先腐蚀后膨原创 2017-10-09 21:04:41 · 653 阅读 · 0 评论 -
图像滤波之高斯滤波介绍
1 高斯滤波简介 了解高斯滤波之前,我们首先熟悉一下高斯噪声。高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性,高斯白噪声包括热噪声和散粒噪声。 高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高转载 2017-09-23 10:06:44 · 2928 阅读 · 0 评论 -
深度学习数学相关知识
一、线性代数二、概率论1.均值、方差、标准差、协方差的概念及意义:https://blog.csdn.net/s294878304/article/details/101863990三、线性规划原创 2019-10-23 08:48:37 · 176 阅读 · 0 评论 -
图像处理之中值滤波介绍及C实现
1 中值滤波概述 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号平滑处理技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为转载 2017-09-23 10:14:03 · 3556 阅读 · 1 评论 -
灰度图像的腐蚀与膨胀
从实例来演示整个过程,易于理解,这是一个很好的详细的例子。http://hi.baidu.com/lwb198609_love/blog/item/6b3b1f395f8228f315cecb97.html(1)灰度膨胀>>t=rand(7,8);>> t=ceil(t.*256)%t为灰度图像t = 209 125 191 9 168 246 158转载 2017-09-23 09:33:58 · 10797 阅读 · 1 评论 -
最小二乘法
一.背景 5月9号到北大去听hulu的讲座《推荐系统和计算广告在视频行业应用》,想到能见到传说中的项亮大神,特地拿了本《推荐系统实践》求签名。讲座开始,主讲人先问了下哪些同学有机器学习的背景,我恬不知耻的毅然举手,真是惭愧。后来主讲人在讲座中提到了最小二乘法,说这个是机器学习最基础的算法。神马,最基础,我咋不知道呢! 看来以后还是要对自己有清晰认识。 回来赶紧上百度,搜了下转载 2017-10-29 16:29:01 · 296 阅读 · 0 评论 -
高人对libsvm的经典总结(全面至极)
http://www.ilovematlab.cn/viewthread.php?tid=74019&sid=vYpSs5SVM相关资源汇总[matlab-libsvm-class-regress](by faruto)SVM相关资源汇总[matlab-libsvm-class-regress](by faruto)转载 2014-05-08 15:05:18 · 779 阅读 · 0 评论 -
从零开始实现主成分分析(PCA)算法
声明:版权所有,转载请联系作者并注明出处:http://blog.csdn.net/u013719780?viewmode=contents知乎专栏:https://www.zhihu.com/people/feng-xue-ye-gui-zi前面两篇文章详细讲解了线性判别分析LDA,说到LDA,就不能不提到主成份分析,简称为PCA,是一种非监督学习算法,经常被用来进行数据降维、有损数据压...转载 2018-07-30 14:28:25 · 2305 阅读 · 1 评论 -
二值图像的距离变换研究
http://blog.csdn.net/trent1985/article/details/18081761[研究内容]二值图像距离变换[正文]二值图像距离变换的概念由Rosenfeld和Pfaltz于1966年在论文[1]中提出,目前广泛应用于计算机图形学,目标识别及GIS空间分析等领域,其主要思想是通过表识空间点(目标点与背景点)距离的过程,最终将二值图像转载 2017-12-29 14:17:21 · 6863 阅读 · 1 评论 -
马氏距离
1马氏距离马氏距离是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,是欧氏距离的一种推广。它通过协方差来计算两点之间距离,是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的相关性。先上两个图看下马氏距离与欧氏距离的区别。上图左为欧氏距离,A和B到mu是一样的距离,上图右为马氏距离,A和B到mu也是一样的距离,这说明马氏距离的计算中...转载 2018-07-30 15:43:49 · 5162 阅读 · 0 评论 -
特征值和特征向量
介绍特征向量和特征值在计算机视觉和机器学习中有许多重要的应用。众所周知的例子是PCA(主成分分析)进行降维或人脸识别是特征脸。特征向量和特征值的一个有趣应用在我的另一篇有关误差椭圆的博文中提到。此外,特征值分解形成协方差矩阵几何解释的基础。在这篇文章中,我将简单的介绍这个数学概念,并且展示如何手动获取二维方形矩阵的特征值分解。特征向量是一个向量,当在它上面应用线性变换时其方向保持不变。考虑...转载 2018-07-30 14:24:35 · 4900 阅读 · 0 评论 -
浅谈均值、方差、标准差、协方差的概念及意义
浅谈均值、方差、标准差、协方差的概念及意义一、统计学的基本概念统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:均值:标准差:方差:均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0, 8, 12, 20]和[8, ...转载 2019-10-23 08:37:35 · 9588 阅读 · 0 评论 -
强化学习
强化学习(reinforcement learning),又称再励学习、评价学习,是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。但在传统的机器学习分类中没有提到过强化学习,而在连接主义学习中,把学习算法分为三种类型,即非监督学习(unsupervised learning)、监督学习(supervised leaning)和强化学习。中文转载 2017-08-03 11:45:03 · 1235 阅读 · 0 评论 -
整理:深度学习 vs 机器学习 vs 模式识别
摘要:本文我们来关注下三个非常相关的概念(深度学习、机器学习和模式识别),以及他们与2015年最热门的科技主题(机器人和人工智能)的联系,让你更好的理解计算机视觉,同时直观认识机器学习的缓慢发展过程。【编者按】本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisiewicz的个人博客文章,阅读本文,你可以更好的理解计算机视觉是怎么一回事,同时对机转载 2017-08-04 10:44:03 · 386 阅读 · 0 评论 -
协方差代表的意义是什么?
协方差代表的意义是什么? 在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况: 情况一,如上, 当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大 Y 也越大, X 越小 Y 也越小,这种情况,我们称为“正相关”。 情况二, 如上...转载 2018-07-30 14:37:13 · 4869 阅读 · 0 评论 -
自适应阈值分割(最大类间方差法、大津法、OTSU)
最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标两部分,或者说,是寻找一个阈值为K,将图像的颜色分为1,2.....K和K+1.....256两部分。如何确定这个阈值K?算法分类的原理是让背景和目标之间的类间方差最大,因为背景和目标之间的类间方差越大,说明构成图像的...转载 2019-11-15 21:10:09 · 4363 阅读 · 0 评论 -
深入浅出之Focal Loss、VFL与DFL
一、提出背景Focal Loss的提出主要是为了解决在目标检测等任务中常见的类别不平衡问题,特别是在正负样本比例极不均衡的情况下,模型往往会被大量简单样本(如背景)所主导,导致对少数类样本(如目标物体)的学习不足。此外,传统的损失函数(如交叉熵损失)在处理难易样本时也存在一定的问题,即模型容易对简单样本过度拟合,而忽视难分类样本的学习。二、时间与作者。原创 2024-09-24 13:57:15 · 1267 阅读 · 0 评论 -
深入浅出之目标检测边框损失函数进化史
目标检测边框损失函数的进化史可以归纳为一系列从简单到复杂、从单一到全面的发展过程。这个过程不仅反映了研究者们对目标检测任务理解的深入,也体现了他们对更高精度和更稳定性能的追求。原创 2024-09-24 09:02:35 · 712 阅读 · 0 评论 -
深入浅出之回归损失函数
L1 Loss是模型预测值f(x)和真实值y之间绝对差值的平均值。原创 2024-09-23 15:11:06 · 850 阅读 · 0 评论 -
深入浅出之交叉熵与相对熵损失函数
交叉熵是Shannon信息论中的一个重要概念,主要用于度量两个概率分布间的差异性信息。在机器学习中,交叉熵通常用于度量预测分布与真实分布之间的差异,特别是在分类任务中。交叉熵越小,表示预测分布越接近真实分布,模型的预测效果越好。原创 2024-09-23 14:47:07 · 1065 阅读 · 0 评论 -
深入浅出之 ELAN(YOLO)
ELAN是一种高效的层聚合网络结构,它通过特定的方式将不同层的特征信息进行融合,以增强模型对目标特征的学习能力。原创 2024-09-23 08:51:40 · 1370 阅读 · 0 评论 -
深入浅出之RepConv与RepBlock(YOLO)
RepBlock没有一个标准的定义,但我们可以假设它是一个包含多个层(可能是RepConv层、普通卷积层、激活函数等)的块,这些层以某种方式组合在一起以提高模型的性能。def __init__(self, in_channels, out_channels, ...): # 其他参数根据具体需求定义# 定义块内的层self.conv1 = RepConv(in_channels, out_channels // 2, ...) # 假设使用RepConv# 可以添加更多层,如池化层、归一化层等。原创 2024-09-21 14:38:25 · 1362 阅读 · 0 评论