
深度学习
文章平均质量分 90
深度学习相关基础汇总
浩瀚之水_csdn
路漫漫其修远兮,吾将上下而求索,立刻行动,坚持,努立
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
本地部署「DeepSeek」模型硬件配置要求
本地部署「DeepSeek」系列模型(如语言模型、多模态模型等)的硬件配置需求取决于具体模型的规模(参数量)、应用场景(推理/训练)以及性能要求。必须使用多卡(8+ GPU)分布式训练/推理,结合模型并行(如Megatron-LM)和流水线并行。:NVIDIA RTX 3090/4090(24GB显存)或 Tesla T4(16GB显存)。需多卡并行推理(如2-4张GPU),结合模型并行(Tensor Parallelism)技术。:高端GPU功耗可达300W+/卡,需专业散热和电源(如80+铂金电源)。原创 2025-02-08 10:23:33 · 16887 阅读 · 0 评论 -
deepseek版本分支介绍
DeepSeek LLM 是一款由深度求索(DeepSeek)公司开发的人工智能语言模型,旨在通过自然语言处理(NLP)技术,提供高效、智能的文本生成、理解和交互能力。原创 2025-02-07 17:16:32 · 1339 阅读 · 0 评论 -
libtorch (pytorch c++) 教程(八)
这是个教程总结,libtorch教程一共八章,主要是实现了c++版本的分类,分割和检测工具吧。这对一些需要C++/C#/Java做项目的同志来说,想必是大大的福音了。由于代码全程几乎手敲,不像现在许多python项目,可以直接从其他地方CV(ctr C + ctr V)过来,同时c++项目debug起来比python麻烦很多,光是项目大了以后编译一次都耗时很久....算不上诉苦,只能说干c++的都是脏活,让人头秃👨🦲。不过现在深度学习相关的岗位,尤其是CV岗,python的HC真的不多,大厂还转载 2022-05-12 15:27:17 · 916 阅读 · 0 评论 -
libtorch(pytorch c++)教程(七)
阅读本文需要有基础的pytorch编程经验,目标检测框架相关知识,不用很深入,大致了解概念即可。本章简要介绍如何如何用C++实现一个目标检测器模型,该模型具有训练和预测的功能。本文的分割模型架构使用yolov4-tiny结构,代码结构参考了bubbliiiing yolov4-tiny,本文分享的c++模型几乎完美复现了pytorch的版本,且具有速度优势,30-40%的速度提升。模型简介简单介绍一下yolov4-tiny模型。yolov4-tiny模型是YOLO(you only look o转载 2022-05-12 15:25:50 · 1527 阅读 · 0 评论 -
libtorch(pytorch c++)教程(六)
本章简要介绍如何如何用C++实现一个语义分割器模型,该模型具有训练和预测的功能。本文的分割模型架构使用简单的U-Net结构,代码结构参考了qubvel segmentation中的U-Net部分,该项目简称SMP,是基于pytorch实现的开源语义分割项目。本文分享的c++模型几乎完美复现了python的版本。模型简介简单介绍一下U-Net模型。U-Net模型的提出是在医学图像分割中,相比于当时的其他模型结构,U-Net的分割能力具有明显优势。一个经典的U-Net结构图如下:U-Net模型采用典型转载 2022-05-12 15:17:12 · 1521 阅读 · 0 评论 -
libtorch (pytorch c++) 教程(四)
title: libtorch教程(四)date: 2021-01-18 19:50:16tags: libtorch本章将详细介绍如何使用libtorch自带的数据加载模块,使用该模块是实现模型训练的重要条件。除非这个数据加载模块功能不够,不然继承libtorch的数据加载类还是很有必要的,简单高效。使用前置条件libtorch提供了丰富的基类供用户自定义派生类,torch::data::Dataset就是其中一个常用基类。使用该类需要明白基类和派生类,以及所谓的继承和多态。有c++编程经转载 2022-05-12 15:14:13 · 1233 阅读 · 0 评论 -
libtorch (pytorch c++) 教程(三)
基本模块搭建模块化编程的思想非常重要,通过模块化编程可以大幅减少重复的敲代码过程,同时代码可读性也会增加。本章将讲述如何使用libtorch搭建一些MLP和CNN的基本模块。MLP基本单元首先是线性层的声明和定义,包括初始化和前向传播函数。代码如下:class LinearBnReluImpl : public torch::nn::Module{public: LinearBnReluImpl(int intput_features, int output_features);转载 2022-05-12 15:13:10 · 897 阅读 · 0 评论 -
libtorch (pytorch c++) 教程(二)
本章讲述张量的常见操作,可以先初步了解,具体在设计损失函数等任务中可以用到。随时翻阅张量初始化libtorch(pytorch c++)的大多数api和pytorch保持一致,因此,libtorch中张量的初始化也和pytorch中的类似。本文介绍四种深度图像编程需要的初始化方法。第一种,固定尺寸和值的初始化。//常见固定值的初始化方式auto b = torch::zeros({3,4});b = torch::ones({3,4});b= torch::eye(4);b = to转载 2022-05-12 15:12:02 · 2652 阅读 · 0 评论 -
QT Creator + Opencv4.x + Libtorch1.7配置
前言纯c++用户而言如果要自研产品,会一个图形界面编程工具还是有必要的。大多数c++用户,如果在Windows平台开发则多使用微软全家桶,如果是Linux平台则可能是其他工具再cmake。这篇博客将记录Windows平台,QT Creator中Opencv和Libtorch的配置。网上有较多关于使用Mingw编译Opencv源码以供QT Creator使用的,事实上,只是基于Opencv和Libtorch的api做开发的话,无需编译。正确的流程为:安装QT Creator时,勾选MSVC编译器,下载op转载 2022-05-12 15:10:43 · 481 阅读 · 0 评论 -
pytorch部署torchscript篇
title: pytorch部署torchscript篇date: 2020-12-16 22:23:29tags: pytorchcategories: pytorchcomments: true本文图片打开失败,请参考链接修改。引言本文旨在介绍如何在Windows平台使用pytorch的c++ api部署pytorch的CNN模型,本文的部署的模型只有推理功能,这是由于torch::jit不支持部分层或者操作的反向传播。当然即使只是推理也足够许多项目运行了,部署使用的工具有visua转载 2022-05-12 14:59:17 · 1851 阅读 · 0 评论 -
libtorch (pytorch c++) 教程(一)
前言本教程旨在教读者如何用c++写模型,训练模型,根据模型预测对象。为便于教学和使用,本文的c++模型均使用libtorch(或者pytorch c++ api)完成搭建和训练等。目前,国内各大平台似乎没有pytorch在c++上api的完整教学,也没有基于c++开发的完整的深度学习开源模型。可能原因很多:c/c++的深度学习已经足够底层和落地,商用价值较高,开发难度偏大,一般不会开源; 基于python训练,libtorch预测的部署形式足够满足大多数项目的需求,如非产品级应用,不会有人愿意研究转载 2022-05-12 14:48:30 · 4092 阅读 · 0 评论 -
科普帖:深度学习中GPU和显存分析
深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中:何为“资源” 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡并纠正几个误区:显存和GPU等价,使用GPU主要看显存的使用? Batch Size 越大,程序越快,而且近似成正比? 显存占用越多,程序越快? 显存占用大小和batch size大小成正比?0 预备知识nvidia-smi是Nvidia显卡命令行管理套件,基于NVML库,旨在管理和监控Nvidia GPU设备。nvidia-smi转载 2022-03-10 15:55:48 · 9006 阅读 · 0 评论 -
白夜:一文看懂AI项目流程及边缘设备开发
在《AI未来星球》内部群中,白夜从AI项目开发及边缘设备开发的角度,深入浅出的分享了,AI项目开发中的各种感受,以及工作中使用过的一些边缘设备的开发经验。PS:不同嘉宾分享中涉及的相关代码及图片,可点击下载。文章目录1 个人简介2 第一个深度学习项目3 从GPU到边缘计算设备3.1 AI项目的一般开发交付流程3.2 AI产品常见的三种交付形态3.3 应用类的基本框架3.4 为什么选择边缘计算设备?3.5 边缘计算设备的特点4 常见的边缘计算设备平台4.1 NVIDIA Jeston转载 2022-03-10 15:47:18 · 4398 阅读 · 0 评论 -
深入浅出Yolov5之自有数据集训练超详细教程
除了本文,大白还整理了如何深入浅出人工智能行业,算法、数据、目标检测、论文创新点、求职等版块的内容,可以查看:点击查看。此外本文章Yolov5相关的代码、模型、数据等内容,可以查看下载:点击查看。当然下方也列出了,如何通过官方链接的方式,下载的过程,也可以查看。1 下载Yolov5代码及模型权重1.1 下载Yolov5代码登录github链接:https://github.com/ultralytics/yolov5,下载完整的代码。1.2 下载Yolov5模型权重在Yolov5转载 2022-03-10 15:41:48 · 2888 阅读 · 0 评论 -
深入浅出Yolo系列之Yolov3&Yolov4&Yolov5&Yolox核心基础知识完整讲解
因为工作原因,项目中经常遇到目标检测的任务,因此对目标检测算法会经常使用和关注,比如Yolov3、Yolov4、Yolov5、Yolox算法。当然,实际项目中很多的第一步,也都是先进行目标检测任务,比如人脸识别、多目标追踪、REID、客流统计等项目。因此目标检测是计算机视觉项目中非常重要的一部分。从2018年Yolov3年提出的两年后,在原作者声名放弃更新Yolo算法后,俄罗斯的Alexey大神扛起了Yolov4的大旗,然后不久又出现了Yolov5。而到了2021年,就在大家质疑Yolo系列该如转载 2022-03-10 15:35:55 · 1905 阅读 · 0 评论 -
YoloV5代码详细解读
本文重点描述开源YoloV5代码实现的细节,不会对YoloV5的整体思路进行介绍,整体思路可以参考江大白的博客江大白:深入浅出Yolo系列之Yolov3&Yolov4&Yolov5&Yolox核心基础知识完整讲解2644 赞同 · 332 评论文章正在上传…重新上传取消讲解的很细致,建议阅读之后再来看本篇文章。声明:本文有些图摘自江大白的上述博客,如有侵权,请联系本人删除本文所使用的代码为2021-08-23日flok的官网YoloV5代码仓GitHub - xu转载 2022-03-10 15:33:38 · 27663 阅读 · 0 评论 -
目标检测算法YOLOv4详解
YOLOv4是精度速度最优平衡, 各种调优手段是真香,本文主要从以下几个方面进行阐述:YOLOv4介绍 YOLOv4框架原理 BackBone训练策略 BackBone推理策略 检测头训练策略 检测头推理策略1.YOLOv4介绍YOLOV4其实是一个结合了大量前人研究技术,加以组合并进行适当创新的算法,实现了速度和精度的完美平衡。可以说有许多技巧可以提高卷积神经网络(CNN)的准确性,但是某些技巧仅适合在某些模型上运行,或者仅在某些问题上运行,或者仅在小型数据集上运行;我们来码一码这篇文转载 2022-03-08 15:04:29 · 13852 阅读 · 0 评论 -
深度剖析目标检测算法YOLOV4
深度剖析目标检测算法YOLOV4目录简述 yolo 的发展历程 介绍 yolov3 算法原理 介绍 yolov4 算法原理(相比于 yolov3,有哪些改进点) YOLOV4 源代码日志解读yolo 发展历程转存失败重新上传取消采用卷积神经的目标检测算法大致可以分为两个流派,一类是以 R-CNN 为代表的 two-stage,另一类是以 YOLO 为代表的 one-stage,R-CNN 系列的原理:通过 ROI 提取出大约 2000 个候选框,然后每个候选框通过一个独立的 CN转载 2022-03-08 14:28:25 · 1249 阅读 · 0 评论 -
一文读懂YOLO V5 与 YOLO V4
YOLO之父Joseph Redmon在今年年初宣布退出计算机视觉的研究的时候,很多人都以为目标检测神器YOLO系列就此终结。然而在4月23日,继任者YOLO V4却悄无声息地来了。Alexey Bochkovskiy发表了一篇名为YOLOV4: Optimal Speed and Accuracy of Object Detection的文章。YOLO V4是YOLO系列一个重大的更新,其在COCO数据集上的平均精度(AP)和帧率精度(FPS)分别提高了10% 和12%,并得到了Joseph Redmon转载 2022-03-08 14:24:16 · 7307 阅读 · 0 评论 -
目标检测数据集MSCOCO简介
简介介绍一下目标检测领域另外一个比较有名的数据集MS COCO(Microsoft COCO: Common Objects in Context) .MSCOCO 数据集是微软构建的一个数据集,其包含 detection, segmentation, keypoints等任务。MSCOCO主要是为了解决detecting non-iconic views of objects(对应常说的detection), contextual reasoning between objects ...转载 2022-03-07 11:35:58 · 2321 阅读 · 0 评论 -
目标检测数据集PASCAL VOC简介
简介PASCAL VOC挑战赛 (ThePASCALVisual Object Classes )是一个世界级的计算机视觉挑战赛,PASCAL全称:Pattern Analysis, Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。很多优秀的计算机视觉模型比如分类,定位,检测,分割,动作识别等模型都是基于PASCAL VOC挑战赛及其数据集上推出的,尤其是一些目标检测模型(比如大名鼎鼎的R CNN系列,以及后面的YOL...转载 2022-03-07 11:32:51 · 13695 阅读 · 0 评论 -
MMDection
摘要我们介绍了MMDetection,这是一个对象检测工具箱,其中包含一组丰富的对象检测和实例分割方法以及相关的组件和模块。 该工具箱从赢得了COCO Challenge 2018检测轨道的MMDet团队的代码库开始。它逐渐发展成为一个涵盖许多流行检测方法和现代模块的统一平台。 它不仅包括训练和推理代码,而且还为200多个网络模型提供权重。 我们认为该工具箱是迄今为止最完整的检测工具箱。在本文中,我们介绍了此工具箱的各种功能。 此外,我们还对不同的方法,组件及其超参数进行了基准研究。我们希望该工具箱和基转载 2021-12-03 19:49:46 · 1161 阅读 · 0 评论 -
基于深度学习的目标检测算法综述(一)
基于深度学习的目标检测算法综述(一)基于深度学习的目标检测算法综述(二)基于深度学习的目标检测算法综述(三)本文内容原创,作者:美图云视觉技术部 检测团队,转载请注明出处目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初2013年提出的R-CNN、OverFeat,到后面的Fast/Faster R-CNN,SSD,YOLO转载 2021-12-03 18:23:12 · 4384 阅读 · 0 评论 -
基于正样本的表面缺陷检测
表面缺陷检测在工业生产中起着非常重要的作用,基于机器视觉的表面缺陷检测可以极大的提升工业生产的效率。随着近年来深度学习在计算机视觉领域的发展,卷积神经网络在诸多图像任务上都取得了显著的效果,然而这些方法往往是需要大量标注数据的有监督学习。在实际的工业场景中,缺陷样本往往是难以收集的,而且标注的成本也十分巨大。针对上述有监督学习在实际应用中存在的问题,本文提出了一种仅基于正样本训练的缺陷检测方法。训练过程中只需要提供足够的正样本,无需缺陷数据和手动标注,也可以取得较好的缺陷检测效果,具有较高的应用价值。转载 2021-12-03 17:39:17 · 2993 阅读 · 2 评论 -
Mask R-CNN为什么“家喻户晓”
目标检测和语义分割技术通过强大的目标检测框架和语义分割框架取得显著进步,这些方法提供了灵活性、鲁棒性,快速的训练。对象分割要求正确检测图像中所有目标的同时精确地分割每个实例。因此,结合对象检测的经典计算机视觉任务的元素,其中的目标是分类单个对象和使用边界框定位每个对象和语义分割,目标是将每个像素分类为一组固定的类别,不区分对象实例。何恺明团队证明了这一点一个非常简单、灵活和快速的系统Mask R-CNN可以超越它先前最先进的实例分割结果。该方法,称为Mask R-CNN。文章传送门:https:转载 2021-12-03 17:31:36 · 468 阅读 · 0 评论 -
深度学习优化算法总结
动量(Momentum)算法动量(Momentum)的引入可以解决“峡谷”和“鞍点”问题的同时可以加速SGD在高曲率、小幅但是方向一致的梯度的情况下,原始的 SGD 在下降过程中会发生来回震荡;或者在鞍点处因为质量小速度很快减为 0,导致无法越过平地。动量方法使轨迹更加稳定;同时因为在鞍点处由于动量的作用,更容易越过平地。SDG加入动量参数更新公式其中,动量算法的变量 v 速度,相关的超参数 α(0.9)。原始 SGD 每次更新的步长只是梯度乘以学习率;加入动量的SDG的转载 2021-12-03 17:28:17 · 422 阅读 · 0 评论 -
“网络手术后”的ResNet——ResNeSt
ResNet变体作为目标检测、语义分割的骨干网络。modularSplit注意块,该注意块可以跨功能图组进行注意,通过叠加这些分割的注意块ResNet样式,得到了一个新的ResNet变体,称之为ResNeSt,保留了整个ResNet结构,可以直接用于下游任务,而不引入额外的计算成本。图像分类已经是计算机视觉研究中的一项基础又常见的工作。用于图像分类的神经网络通常是为其他应用而设计的神经网络的骨干,例如目标检测、语义分割和姿态估计。最近的工作通过大规模神经结构搜索(NAS)显著提高了图像分类的准确性。转载 2021-12-03 17:27:13 · 1021 阅读 · 0 评论 -
目标检测比赛中的 trick
1.数据增强可参考:初识CV:MMDetection中文文档—4.技术细节数据增强是增加深度模型鲁棒性和泛化性能的常用手段,随机翻转、随机裁剪、添加噪声等也被引入到检测任务的训练中来,个人认为数据(监督信息)的适时传入可能是更有潜力的方向。个人观点:问题:为什么图像和Bbox需要进行数据增强呢?答:因为数据多了就可以尽可能多的学习到图像中的不变性,学习到的不变性越多那么模型的泛化能力越强。但是输入到CNN中的图像为什么不具有平移不变性?如何去解决?下面链接有专门的解析:初识C转载 2021-12-03 15:27:28 · 1752 阅读 · 0 评论 -
网络WIFI摄像机方案主控芯片最全介绍
选择合适的IPC主控芯片需平衡性能、成本、功耗和开发资源,建议根据产品定位优先验证头部厂商方案。原创 2021-12-03 15:08:58 · 6194 阅读 · 0 评论 -
一文总结调参技巧
调参数是深度学习工作中,必不可少的一步。“得参数者,得天下“那么,调参的方法常见的有哪些?小编为您总结一番~01寻找合适的学习率(learning rate)学习率是一个非常非常重要的超参数在面对不同规模、不同batch-size、不同优化方式、不同数据集时,学习率的最合适的值都是不确定的,所以,我们无法光凭经验来准确地确定学习率的值。策略:在训练中不断寻找最合适当前状态的学习率。下图利用fastai中的lr_find()函数寻找合适的学习率,根据下方的学习率-损失曲线得到此时合适的学习率为转载 2021-12-03 15:06:58 · 6003 阅读 · 0 评论 -
深度学习之表面缺陷识别
三分钟知识学习到~随着深度学习的快速发展,基于卷积神经网络(CNN)的计算机视觉技术在工业领域得到了广泛的应用。目前,机器视觉表面缺陷检测是CNN在工业上最成熟的应用之一。接下来介绍深度学习在表面缺陷检测领域的应用。缺陷检测问题的定义表面缺陷不仅影响产品的美观和舒适度,而且一般也会对其使用性能带来不良影响,因此企业对产品的表面缺陷检测非常重视,以便有效控制产品质量。当前对于缺陷有两种认知的方式:有监督的方法,也就是体现在利用标记了标签(包括类别、矩形框或逐像素等)的缺陷图像输入到网络转载 2021-12-03 15:04:14 · 3246 阅读 · 0 评论 -
一文看尽深度学习中的20种卷积(附源码整理和论文解读)
引言卷积,是卷积神经网络中最重要的组件之一。不同的卷积结构有着不一样的功能,但本质上都是用于提取特征。比如,在传统图像处理中,人们通过设定不同的算子来提取诸如边缘、水平、垂直等固定的特征。而在卷积神经网络中,仅需要随机初始化一个固定卷积核大小的滤波器,并通过诸如反向传播的技术来实现卷积核参数的自动更新即可。其中,浅层的滤波器对诸如点、线、面等底层特征比较敏感,深层的滤波器则可以用于提取更加抽象的高级语义特征,以完成从低级特征到高级特征的映射。本文将从背景、原理、特性及改进四个维度分别梳理10篇影响力深远转载 2021-09-29 15:09:57 · 4240 阅读 · 0 评论 -
PyTorch环境配置及安装
环境配置温馨提示:为了更好的教程体验,提供视频、阅读地址Youtube:https://www.youtube.com/playlist?list=PLgAyVnrNJ96CqYdjZ8v9YjQvCBcK5PZ-VBiliBili:https://www.bilibili.com/video/av74281036/Github:https://github.com/xiaotudui/PyTorch-Tutorial相关下载:https://pan.baidu.com/s/16k...转载 2020-10-30 10:01:41 · 6668 阅读 · 3 评论 -
3DSlicer相关资料汇总
1. 官网:https://www.slicer.org/2. 中文论坛:https://slicercn.com/?page_id=4082原创 2020-07-08 15:17:33 · 2056 阅读 · 0 评论 -
深度学习资源
http://blog.csdn.net/zouxy09/article/details/8782018,深度学习系列知识普及原创 2017-05-26 09:23:46 · 433 阅读 · 0 评论 -
Deep Learning(深度学习)学习笔记整理系列之(一)
Deep Learning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion 1.0 2013-04-08 声明:1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明转载 2017-05-28 09:53:05 · 931 阅读 · 0 评论 -
Deep Learning(深度学习)学习笔记整理系列之(二)
Deep Learning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion 1.0 2013-04-08声明:1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参转载 2017-05-28 09:54:05 · 424 阅读 · 1 评论 -
Deep Learning(深度学习)学习笔记整理系列之(三)
Deep Learning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion 1.0 2013-04-08声明:1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参转载 2017-05-28 09:55:17 · 342 阅读 · 0 评论 -
Deep Learning(深度学习)学习笔记整理系列之(四)
Deep Learning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion 1.0 2013-04-08声明:1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参转载 2017-05-28 09:56:17 · 361 阅读 · 0 评论 -
Deep Learning(深度学习)学习笔记整理系列之(五)
Deep Learning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion 1.0 2013-04-08声明:1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参考原文献。2)本文仅供学转载 2017-05-28 09:57:26 · 284 阅读 · 0 评论