蔡高厅高等数学34-拉格朗日(Lagrange 定理的证明及应用)

Lagrange 定理的证明

辅助函数 φ(x) = f(x) - kx
φ(x) 在[a,b] 区间上连续, (a,b)上可导
求出 φ(a) = φ(b)

说明φ(x)满足rolle 定理的条件, 则 Lagrange 定理得证

证明 f'(ξ) = k


Lagrange 定理的其他形式 10m

(1)
f(b) - f(a) = f'(ξ) (b-a)
  • 其中 ξ 介于a,b 之间
(2)
设 f(x) 在 [a,b]满足Lagrange 定理条件
x 为[a,b] 任意一点, x 有增量 Δx( x + Δx 属于 [a,b])
则 f(x) 在 [x,Δx] 满足Lagrange 定理
f(x+Δx) - f(x) = f'(ξ) Δx
(3)
0 <θ < 1 , ξ = x + θΔx,
f(x + Δx ) - f(x) = f'(x + θΔx)Δx
证明:
(1) 若 f'(x) 恒等于0 , a < x < b, 则f(x) 为常数
思路
17m
结论 f'(x) == 0 , x 属于 I 《==》 f(x) == c
(2) f'(x) = g'(x) , x 属于 (a,b), 则 f(x) - g(x) = 常数 (x 属于 a,b)
证明: 利用公式1
(3) 若 f'(x) = k <>0, x 属于 a,b
则 f(x) = kx + c ,x 属于 a,b
(课后自己证明) 提示 k 看成 kx
(4) 利用lagrange 定理证明函数不等式或者数字不等式

例1 证明 当 x > 1 时, e^x > ex
证明:
f(x) 属于 [1,x]
常用形式2
等量代换
例2 证明: 对任意实数 a,b 都有
|arctana - arctanb| <= |a-b|

证明:
提示 arctana arctanb 看做是 两点处 x = a , x = b 两点处的函数值。
选定函数 f(x) = arctanx
例3 设f(x) 属于 D^2[1,2] (f(x) 在[1,2] 二阶可导), f(1) = f(2) = 0
F(x) = (x-1)^2f(x) , 证明 , 至少存在一个点ξ 属于(1,2)
使得 F''(ξ) = 0
提示:
两次利用rolle 定理

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值