基本不等式&&凸函数&&拉格朗日乘子

21 篇文章 0 订阅
19 篇文章 0 订阅

基本不等式及其证明

调和平均值: M 1 ‾ = n 1 x 1 + 1 x 2 + . . . + 1 x n \overline{M_1}=\frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}} M1=x11+x21+...+xn1n
几何平均值: M 2 ‾ = x 1 x 2 . . . x n n \overline{M_2}=\sqrt[n]{x_1x_2...x_n} M2=nx1x2...xn
算术平均值: M 3 ‾ = x 1 + x 2 + . . . + x n n \overline{M_3}=\frac{x_1+x_2+...+x_n}{n} M3=nx1+x2+...+xn
平方平均值: M 4 ‾ = x 1 2 + x 2 2 + . . . + x n 2 n \overline{M_4}=\sqrt{\frac{x_1^2+x_2^2+...+x_n^2}{n}} M4=nx12+x22+...+xn2

大小关系 M 1 ‾ ≤ M 2 ‾ ≤ M 3 ‾ ≤ M 4 ‾ ( x 1 = x 2 = x 3 = . . . = x n ) \overline{M_1}\leq\overline{M_2}\leq\overline{M_3}\leq\overline{M_4}\quad(x_1=x_2=x_3=...=x_n) M1M2M3M4(x1=x2=x3=...=xn)

证明 M 2 ‾ ≤ M 3 ‾ \overline{M2}\leq\overline{M3} M2M3

在这里插入图片描述

证明 M 1 ‾ ≤ M 2 ‾ \overline{M1}\leq\overline{M2} M1M2

在这里插入图片描述

证明 M 3 ‾ ≤ M 4 ‾ \overline{M3}\leq\overline{M4} M3M4
对凸函数理解为:

在这里插入图片描述
上图我自己比较难理解所以由数学分析中表述为:
f为I上凸函数充要条件为:对于I上任意三点 x 1 < x 2 < x 3 x_1<x_2<x_3 x1<x2<x3总有 f ( x 2 ) − f ( x 1 ) x 2 − x 1 ≤ f ( x 3 ) − f ( x 2 ) x 3 − x 2 \frac{f(x_2)-f(x_1)}{x_2-x_1}\leq\frac{f(x_3)-f(x_2)}{x_3-x_2} x2x1f(x2)f(x1)x3x2f(x3)f(x2)
此处说法可理解为函数斜率再在增加,又可等价为f可导时,函数的导函数为增函数
图像可理解为向下凸的图像例如
在这里插入图片描述
进一步理解凸函数中(1)式=定理6.14.=下列论断等价(前提:f为区间I上可导函数):①f为I上凸函数 ⟺ \Longleftrightarrow ②f’为I上增函数 ⟺ \Longleftrightarrow ③I上任意两点 x 1 , x 2 , f ( x 2 ) ≥ f ( x 1 ) + f ′ ( x 1 ) ( x 2 − x 1 ) x_1,x_2,f(x_2)\geq f(x_1)+f'(x_1)(x_2-x_1) x1,x2,f(x2)f(x1)+f(x1)(x2x1)
①推②:任意找两点做导数极限判别大小
②推③:
l a g r a n g e 中 值 定 理 得 到 [ a , b ] 连 续 , ( a , b ) 可 导 时 满 足 f ′ ( ξ ) = f ( b ) − f ( a ) b − a 以 x 1 , x 2 两 点 为 端 点 的 区 间 由 f ′ 的 增 函 数 条 件 可 得 : f ( x 2 ) − f ( x 1 ) = f ′ ( ξ ) ( x 2 − x 1 ) ≥ f ′ ( x 1 ) ( x 2 − x 1 ) 变 形 可 得 到 上 式 ③ lagrange中值定理得到[a,b]连续,(a,b)可导时满足f'(\xi)=\frac{f(b)-f(a)}{b-a}\\ 以x_1,x_2两点为端点的区间由f'的增函数条件可得:\\ f(x_2)-f(x_1)=f'(\xi)(x_2-x_1)\geq f'(x_1)(x_2-x_1)变形可得到上式③ lagrange[a,b],(a,b)f(ξ)=baf(b)f(a)x1,x2ff(x2)f(x1)=f(ξ)(x2x1)f(x1)(x2x1)
③推①:
在这里插入图片描述

拉格朗日乘子

一般解决条件极值问题比较方便

  • 条件极值问题:
    条 件 组 限 制 下 : ϕ k ( x 1 , x 2 , . . . , x n ) = 0 k = 1 , 2 , . . . , m ( m < n ) 条件组限制下:\phi_k(x_1,x_2,...,x_n)=0 \quad k=1,2,...,m\quad(m<n) ϕk(x1,x2,...,xn)=0k=1,2,...,m(m<n)
    求 目 标 函 数 : y = f ( x 1 , x 2 , . . . , x n ) 求目标函数:y=f(x_1,x_2,...,x_n) y=f(x1,x2,...,xn)
    l a g r a n g e 乘 数 法 就 是 一 种 不 依 赖 消 元 而 求 解 条 件 极 值 问 题 的 有 效 方 法 lagrange乘数法就是一种不依赖消元而求解条件极值问题的有效方法 lagrange
Jensen不等式

在这里插入图片描述

在这里插入图片描述
这里还不太明白所以先挖坑
稍后要总结一下隐函数和拉格朗日乘子的其他内容

上述内容参考:
献给高中生——均值不等式与Jensen不等式
均值不等式的四大证明方法合辑…
Jensen不等式初步理解及证明
凸函数与凹函数
[数学分析华东师大版第四版上下册](这个有需要大家可以私信pdf或者自己买哈)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学小牛马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值