文章目录
基本不等式及其证明
调和平均值:
M
1
‾
=
n
1
x
1
+
1
x
2
+
.
.
.
+
1
x
n
\overline{M_1}=\frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}}
M1=x11+x21+...+xn1n
几何平均值:
M
2
‾
=
x
1
x
2
.
.
.
x
n
n
\overline{M_2}=\sqrt[n]{x_1x_2...x_n}
M2=nx1x2...xn
算术平均值:
M
3
‾
=
x
1
+
x
2
+
.
.
.
+
x
n
n
\overline{M_3}=\frac{x_1+x_2+...+x_n}{n}
M3=nx1+x2+...+xn
平方平均值:
M
4
‾
=
x
1
2
+
x
2
2
+
.
.
.
+
x
n
2
n
\overline{M_4}=\sqrt{\frac{x_1^2+x_2^2+...+x_n^2}{n}}
M4=nx12+x22+...+xn2
大小关系
:
M
1
‾
≤
M
2
‾
≤
M
3
‾
≤
M
4
‾
(
x
1
=
x
2
=
x
3
=
.
.
.
=
x
n
)
\overline{M_1}\leq\overline{M_2}\leq\overline{M_3}\leq\overline{M_4}\quad(x_1=x_2=x_3=...=x_n)
M1≤M2≤M3≤M4(x1=x2=x3=...=xn)
证明 M 2 ‾ ≤ M 3 ‾ \overline{M2}\leq\overline{M3} M2≤M3
证明 M 1 ‾ ≤ M 2 ‾ \overline{M1}\leq\overline{M2} M1≤M2
证明 M 3 ‾ ≤ M 4 ‾ \overline{M3}\leq\overline{M4} M3≤M4
对凸函数理解为:
上图我自己比较难理解所以由数学分析中表述为:
f为I上凸函数充要条件为:对于I上任意三点
x
1
<
x
2
<
x
3
x_1<x_2<x_3
x1<x2<x3总有
f
(
x
2
)
−
f
(
x
1
)
x
2
−
x
1
≤
f
(
x
3
)
−
f
(
x
2
)
x
3
−
x
2
\frac{f(x_2)-f(x_1)}{x_2-x_1}\leq\frac{f(x_3)-f(x_2)}{x_3-x_2}
x2−x1f(x2)−f(x1)≤x3−x2f(x3)−f(x2)
此处说法可理解为函数斜率再在增加,又可等价为f可导时,函数的导函数为增函数
图像可理解为向下凸的图像例如
进一步理解凸函数中(1)式=定理6.14.=下列论断等价(前提:f为区间I上可导函数):①f为I上凸函数
⟺
\Longleftrightarrow
⟺②f’为I上增函数
⟺
\Longleftrightarrow
⟺③I上任意两点
x
1
,
x
2
,
f
(
x
2
)
≥
f
(
x
1
)
+
f
′
(
x
1
)
(
x
2
−
x
1
)
x_1,x_2,f(x_2)\geq f(x_1)+f'(x_1)(x_2-x_1)
x1,x2,f(x2)≥f(x1)+f′(x1)(x2−x1)
①推②:任意找两点做导数极限判别大小
②推③:
l
a
g
r
a
n
g
e
中
值
定
理
得
到
[
a
,
b
]
连
续
,
(
a
,
b
)
可
导
时
满
足
f
′
(
ξ
)
=
f
(
b
)
−
f
(
a
)
b
−
a
以
x
1
,
x
2
两
点
为
端
点
的
区
间
由
f
′
的
增
函
数
条
件
可
得
:
f
(
x
2
)
−
f
(
x
1
)
=
f
′
(
ξ
)
(
x
2
−
x
1
)
≥
f
′
(
x
1
)
(
x
2
−
x
1
)
变
形
可
得
到
上
式
③
lagrange中值定理得到[a,b]连续,(a,b)可导时满足f'(\xi)=\frac{f(b)-f(a)}{b-a}\\ 以x_1,x_2两点为端点的区间由f'的增函数条件可得:\\ f(x_2)-f(x_1)=f'(\xi)(x_2-x_1)\geq f'(x_1)(x_2-x_1)变形可得到上式③
lagrange中值定理得到[a,b]连续,(a,b)可导时满足f′(ξ)=b−af(b)−f(a)以x1,x2两点为端点的区间由f′的增函数条件可得:f(x2)−f(x1)=f′(ξ)(x2−x1)≥f′(x1)(x2−x1)变形可得到上式③
③推①:
拉格朗日乘子
一般解决条件极值问题比较方便
- 条件极值问题:
条 件 组 限 制 下 : ϕ k ( x 1 , x 2 , . . . , x n ) = 0 k = 1 , 2 , . . . , m ( m < n ) 条件组限制下:\phi_k(x_1,x_2,...,x_n)=0 \quad k=1,2,...,m\quad(m<n) 条件组限制下:ϕk(x1,x2,...,xn)=0k=1,2,...,m(m<n)
求 目 标 函 数 : y = f ( x 1 , x 2 , . . . , x n ) 求目标函数:y=f(x_1,x_2,...,x_n) 求目标函数:y=f(x1,x2,...,xn)
l a g r a n g e 乘 数 法 就 是 一 种 不 依 赖 消 元 而 求 解 条 件 极 值 问 题 的 有 效 方 法 lagrange乘数法就是一种不依赖消元而求解条件极值问题的有效方法 lagrange乘数法就是一种不依赖消元而求解条件极值问题的有效方法
Jensen不等式
这里还不太明白所以先挖坑
稍后要总结一下隐函数和拉格朗日乘子的其他内容
上述内容参考:
献给高中生——均值不等式与Jensen不等式
均值不等式的四大证明方法合辑…
Jensen不等式初步理解及证明
凸函数与凹函数
[数学分析华东师大版第四版上下册](这个有需要大家可以私信pdf或者自己买哈)