机器学习快速入门3~4章

第三章:

3.1 Scikit-learn介绍

Scikit-learn介绍

Python语言有所了解的科研人员可能都知道SciPy——一个开源的基于Python的科学计算工具包。

基于SciPy,目前开发者们针对不同的应用领域已经发展出了为数众多的分支版本,它们被统一称为Scikits,即SciPy工具包的意思。

而在这些分支版本中,最有名,也是专门面向机器学习的一个就是Scikit-learn

Scikit-learn项目最早由数据科学家 David Cournapeau 2007 年发起,需要NumPySciPy等其他包的支持,是Python语言中专门针对机器学习应用而发展起来的一款开源框架。

和其他众多的开源项目一样,Scikit-learn目前主要由社区成员自发进行维护。可能是由于维护成本的限制,Scikit-learn相比其他项目要显得更为保守。

  • Scikit-learn从来不做除机器学习领域之外的其他扩展
  • Scikit-learn从来不采用未经广泛验证的算法

Scikit-learn六大功能

  • 分类
  • 回归
  • 聚类
  • 数据降维
  • 模型选择
  • 数据预处理

3.2 Scikit-learn功能:分类

Scikit-learn功能:分类

分类是指识别给定对象的所属类别,属于监督学习的范畴,最常见的应用场景包括垃圾邮件检测和图像识别等。

目前Scikit-learn已经实现的算法包括:

  • 支持向量机(SVM)
  • K-近邻
  • 逻辑回归
  • 决策树
  • 随机森林
  • 多层感知器(MLP)神经网络

Scikit-learn针对每个算法和模块都提供了丰富的参考样例和详细的说明文档。

Scikit-learn功能:回归

回归是指预测与给定对象相关联的连续值属性,最常见的应用场景包括预测药物反应和预测股票价格等。

目前Scikit-learn已经实现的算法包括:

  • 支持向量回归(SVR)
  • 岭回归
  • Lasso回归
  • 弹性网络(Elastic Net)
  • 最小角回归(LARS)
  • 贝叶斯回归
  • 各种不同的鲁棒回归算法等

可以看到,这里实现的回归算法几乎涵盖了所有开发者的需求范围,而且更重要的是,Scikit-learn还针对每种算法都提供了简单明了的用例参考。

Scikit-learn功能:聚类

聚类是指自动识别具有相似属性的给定对象,并将其分组为集合,属于无监督学习的范畴,最常见的应用场景包括顾客细分和试验结果分组。

目前Scikit-learn已经实现的算法包括:

  • K-均值聚类
  • 谱聚类
  • 均值偏移
  • 分层聚类
  • DBSCAN聚类等

Scikit-learn功能:数据降维

数据降维是指使用主成分分析(PCA)、非负矩阵分解(NMF)或特征选择等降维技术来减少要考虑的随机变量的个数,其主要应用场景包括可视化处理和效率提升。

Scikit-learn功能:模型选择

模型选择是指对于给定参数和模型的比较、验证和选择,其主要目的是通过参数调整来提升精度。

目前Scikit-learn实现的模块包括:

  • 网格搜索
  • 交叉验证
  • 各种针对预测误差评估的度量函数

Scikit-learn功能:数据预处理

数据预处理是指数据的特征提取和归一化,是机器学习过程中的第一个也是最重要的一个环节。

  • 归一化是指将输入数据转换为具有零均值和单位权方差的新变量,但因为大多数时候都做不到精确等于零,因此会设置一个可接受的范围,一般都要求落在0-1之间。
  • 特征提取是指将文本或图像数据转换为可用于机器学习的数字变量。

3.3 机器学习代码实例(1)

代码实例:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
iris = load_iris()
X, y = iris.data[:,:2],iris.target
X_train,X_test,y_train,y_test = train_test_split(
    X,y,test_size=0.3,random_state=42)
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test  = scaler.transform(X_test)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train,y_train)
y_pred = knn.predict(X_test)
metrics.accuracy_score(y_test,y_pred)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics

iris = load_iris()
X, y = iris.data[:,:2],iris.target
X_train,X_test,y_train,y_test = train_test_split(
    X,y,test_size=0.3,random_state=42)
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test  = scaler.transform(X_test)
gnb = GaussianNB()
gnb.fit(X_train,y_train)
y_pred = gnb.predict(X_test)
metrics.accuracy_score(y_test,y_pred)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn import metrics

iris = load_iris()
X, y = iris.data[:,:2],iris.target
X_train,X_test,y_train,y_test = train_test_split(
    X,y,test_size=0.3,random_state=42)
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test  = scaler.transform(X_test)
svc = SVC(kernel='linear',C=0.1)
svc.fit(X_train,y_train)
y_pred = svc.predict(X_test)
metrics.accuracy_score(y_test,y_pred)


3.4 机器学习代码实例(2)

加载数据集

from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

或者

from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
函数描述问题类别
load_boston()波士顿房价数据集回归
load_breast_cancer()威斯康辛州乳腺癌数据集分类
load_diabetes()糖尿病数据集回归
load_digits()数字数据集分类
load_iris()鸢尾花数据集分类
load_linnerud()linnerud数据集多变量回归
load_wine()红酒数据集分类

拆分数据集

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(
    X,y,test_size=0.3,random_state=42)
  • test_size:测试集大小
  • train_size:训练集大小
  • random_state:随机种子

特征工程

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test  = scaler.transform(X_test)

特征工程是指从原始数据转换为特征向量的过程。

特征工程是机器学习中最重要的起始步骤,会直接影响机器学习的效果,并通常需要大量的时间。

典型的特征工程包括数据清理、特征提取、特征选择等过程。

建立模型

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5)
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
from sklearn.svm import SVC
svc = SVC(kernel='linear',C=0.1)

拟合模型

knn.fit(X_train,y_train)
gnb.fit(X_train,y_train)
svc.fit(X_train,y_train)

3.5 机器学习预测并评价模型

进行预测并评价模型

y_pred = knn.predict(X_test)
metrics.accuracy_score(y_test,y_pred)
y_pred = gnb.predict(X_test)
metrics.accuracy_score(y_test,y_pred)
y_pred = svc.predict(X_test)
metrics.accuracy_score(y_test,y_pred)

4.1 实验介绍

实验准备

请到04 finding_segments文件目录下开始实验。

项目背景

在这个项目中,你将分析一个数据集的内在结构,这个数据集包含很多客户针对不同类型产品的年度采购额(用金额表示)。这个项目的任务之一是如何最好地描述一个批发商不同种类顾客之间的差异。这样做将能够使得批发商能够更好的组织他们的物流服务以满足每个客户的需求。

这个项目的数据集能够在UCI机器学习信息库中找到.因为这个项目的目的,分析将不会包括’Channel’’Region’这两个特征——重点集中在6个记录的客户购买的产品类别上。

4.2 导入数据

运行下面的的代码单元以载入整个客户数据集和一些这个项目需要的Python库。如果你的数据集载入成功,你将看到后面输出数据集的大小。

# 引入项目需要的库
import numpy as np
import pandas as pd
import visuals as vs
import matplotlib as mpl
 
     
# 可以对DataFrame使用display()函数
from IPython.display import display
 
     
# 设置以inline的形式显示matplotlib绘制的图片(在notebook中显示更美观)
%matplotlib inline
 
     
# 设置matplotlib中文显示
mpl.rcParams['font.family'] = 'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
 
     
# 载入整个客户集
try:
    data = pd.read_csv('customers.csv')
    data.drop(['Region','Channel'], axis=1, inplace=True)
    print('批发客户数据集有 {} 个样本,每个样本有 {} 个特征。'.format(*data.shape))
except:
    print('数据集无法加载,数据集丢失了吗?')

批发客户数据集有 440 个样本,每个样本有 6 个特征。

4.3 分析数据

分析数据

在这部分,你将开始分析数据,通过可视化和代码来理解每一个特征和其他特征的联系。你会看到关于数据集的统计描述,考虑每一个属性的相关性,然后从数据集中选择若干个样本数据点,你将在整个项目中一直跟踪研究这几个数据点。

运行下面的代码单元给出数据集的一个统计描述。注意这个数据集包含了6个重要的产品类型:

  1. ’Fresh’ - 果蔬
  2. ’Milk’ - 牛奶
  3. ’Grocery’ - 杂货
  4. ’Frozen’ - 冷冻食品
  5. ’Detergents_Paper’ - 卫生用品
  6. ’Delicatessen’ - 熟食

想一下这里每一个类型代表你会购买什么样的产品。

# 显示数据集的一个描述

display(data.describe())

选择样本

为了对客户有一个更好的了解,并且了解代表他们的数据将会在这个分析过程中如何变换。最好是选择几个样本数据点,并且更为详细地分析它们。在下面的代码单元中,选择三个索引加入到索引列表indices中,这三个索引代表你要追踪的客户。我们建议你不断尝试,直到找到三个明显不同的客户。

# TODO:从数据集中选择三个你希望抽样的数据点的索引

indices = [29,23,333]

print(data.index)

# 为选择的样本建立一个DataFrame

samples = pd.DataFrame(data.loc[indices], columns=data.keys()).reset_index(drop=True)

print('选择批发客户数据集的样本:')

display(samples)

benchmark = data.mean()

z = ((samples-benchmark)/benchmark)

z.columns = ['果蔬','牛奶','杂货','冷冻食品','卫生用品','熟食']

z.plot.bar(figsize=(10,4))

考虑你上面选择的客户的每一种产品类型的总花费和数据集的统计描述。

  1. 第一个客户很可能是餐厅。
    • 果蔬Fresh产品进货数量超多,高于这类产品的75%分位数
    • 其他类型的货品则很少,低于这些类型产品的中位数
  1. 第二个客户很可能是超市。
    • 每一类货品进货数量都超过中位数,而且较为平均
  1. 第三个客户很有可能是杂货店。
    • 杂货Grocery和卫生用品Detergents_Paper产品进货数量超多,高于这两类产品的75%分位数。

4.4 特征相关性

特征相关性

一个有趣的想法是,考虑这六个类别中的一个(或者多个)产品类别,是否对于理解客户的购买行为具有实际的相关性。也就是说,当用户购买了一定数量的某一类产品,我们是否能够确定他们必然会成比例地购买另一种类的产品。

通过简单地使用监督学习的算法,我们能够通过在移除某一个特征的数据子集上构建一个有监督的回归学习器,然后判断这个模型对于移除特征的预测得分,通过这种方法我们能检验上面的假设。

在下面的代码单元中,实现以下的功能:

  • 使用 DataFrame.drop() 函数移除数据集中你选择的不需要的特征,并将移除后的结果赋值给 new_data
  • 使用 sklearn.cross_validation.train_test_split() 将数据集分割成训练集和测试集。
    • 使用移除的特征作为你的目标标签。设置 test_size 为 0.25 并设置一个 random_state
  • 导入一个决策树回归器,设置一个 random_state,然后用训练集训练它。
  • 使用回归器的 score() 函数输出模型在测试集上的预测得分。
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import r2_score
 
      
test_feature = 'Fresh'
 
      
new_data = pd.DataFrame(data)
label_data = new_data[test_feature]
new_data.drop([test_feature],axis=1,inplace=True)
 
      
X_train, X_test, y_train, y_test = train_test_split(
    new_data, label_data, test_size=0.25, random_state=1)
 
      
regressor = DecisionTreeRegressor(random_state=1)
regressor.fit(X_train,y_train)
pred = regressor.predict(X_test)
 
      
score = r2_score(y_test,pred)
print(score)

结果-0.9233736592978437

可视化特征分布

为了能够对这个数据集有一个更好的理解,我们可以对数据集中的每一个产品特征构建一个散布矩阵(scatter matrix)。如果你发现你在上面尝试预测的特征对于区分一个特定的用户来说是必须的,那么这个特征和其它的特征可能不会在下面的散射矩阵中显示任何关系。相反的,如果你认为这个特征对于识别一个特定的客户是没有作用的,那么通过散布矩阵可以看出在这个数据特征和其它特征中有关联性。运行下面的代码以创建一个散布矩阵。

# 对于数据中的每一对特征构造一个散布矩阵
pd.plotting.scatter_matrix(data,alpha=0.3,figsize=(14,8),diagonal='kde');

# 对于数据中的每一对特征构造一个散布矩阵
import seaborn as sns
sns.pairplot(data,diag_kind='kde')

  1. Detergents_PaperGrocery 和 Milk 相互之间呈现出一定的相关性。
  2. 这个结果验证了之前尝试测试的特征 Fresh 和其他特征之间无明显的相关性。
  3. 所有的特征均呈现正偏态分布,大多数的数据点位于25%分位数以下。

数据预处理

在这个部分,您将通过在数据上做一个合适的缩放,并检测异常点(你可以选择性移除)将数据预处理成一个更好的代表客户的形式。预处理数据是保证你在分析中能够得到显著且有意义的结果的重要环节。

特征缩放

如果数据不是正态分布的,尤其是数据的平均数和中位数相差很大的时候(表示数据非常歪斜)。这时候通常用一个非线性的缩放是很合适的,尤其是对于金融数据。

一种实现这个缩放的方法是使用 Box-Cox 变换,这个方法能够计算出能够最佳减小数据倾斜的指数变换方法。一个比较简单的并且在大多数情况下都适用的方法是使用自然对数。

在下面的代码单元中,需要实现以下功能:

  • 使用 np.log() 函数在数据 data 上做一个对数缩放,然后将它的副本(不改变原始data的值)赋值给 log_data
  • 使用 np.log() 函数在样本数据 samples 上做一个对数缩放,然后将它的副本赋值给 log_samples
import copy
 
      
# TODO:使用自然对数缩放数据
log_data = np.log(copy.copy(data))
 
      
# TODO:使用自然对数缩放样本数据
log_samples = np.log(copy.copy(samples))
 
      
# 为每一对新产生的特征制作一个散射矩阵
pd.plotting.scatter_matrix(log_data,alpha=0.3,figsize=(14,8),diagonal='kde');
sns.pairplot(log_data,diag_kind='kde')

观察

在使用了一个自然对数的缩放之后,数据的各个特征会显得更加的正态分布。对于任意的你以前发现有相关关系的特征对,观察他们的相关关系是否还是存在的(并且尝试观察,他们的相关关系相比原来是变强了还是变弱了)。

运行下面的代码以观察样本数据在进行了自然对数转换之后如何改变了。

# 展示经过对数变换后的样本数据
display(log_samples)

异常值检测

对于任何的分析,在数据预处理的过程中检测数据中的异常值都是非常重要的一步。异常值的出现会使得把这些值考虑进去后结果出现倾斜。这里有很多关于怎样定义什么是数据集中的异常值的经验法则。

这里我们将使用Tukey的定义异常值的方法:一个异常阶(outlier step)被定义成1.5倍的四分位距(interquartile rangeIQR)。

一个数据点如果某个特征包含在该特征的IQR之外的特征,那么该数据点被认定为异常点。

在下面的代码单元中,需要完成下面的功能:

  • 将指定特征的25th分位点的值分配给 Q1。使用 np.percentile() 来完成这个功能。
  • 将指定特征的75th分位点的值分配给 Q3。同样的,使用 np.percentile() 来完成这个功能。
  • 将指定特征的异常阶的计算结果赋值给 step
  • 选择性地通过将索引添加到 outliers 列表中,以移除异常值。

**注意:**如果你选择移除异常值,请保证你选择的样本点不在这些移除的点当中!

一旦你完成了这些功能,数据集将存储在good_data中。

# 对于每一个特征,找到值异常高或者是异常低的数据点
for feature in log_data.keys():
    
    # TODO: 计算给定特征的Q1 (数据的25%分位点)
    Q1 = np.percentile(log_data[feature],25)
    
    # TODO: 计算给定特征的Q3 (数据的75%分位点)
    Q3 = np.percentile(log_data[feature],75)
    
    # TODO: 使用四分位计算异常阶 (1.5倍的四分位距)
    step = 1.5 * (Q3 - Q1)
    
    # 现实异常点
    print("以下数据点被认为是 '{}' 特征的异常值:".format(feature))
    inliers = (log_data[feature] >= Q1 - step) & (log_data[feature] <= Q3 + step)
    outliers_data = log_data[~inliers]
    display(outliers_data)
 
      
# 可选:选择你希望移除的数据点的索引
outliers = [38, 57, 65, 66, 75, 81, 86, 95, 96, 98, 109, 128, 137, 142, 145, 
            154, 161, 171, 175, 183, 184, 187, 193, 203, 218, 233, 264, 285, 
            289, 304, 305, 325, 338, 343, 353, 355, 356, 357, 412, 420, 429, 
            439]
 
      
# 如果选择了的话,移除异常点
good_data = log_data.drop(log_data.index[outliers]).reset_index(drop=True)

以下数据点被认为是 ‘Fresh’ 特征的异常值:

以下数据点被认为是 ‘Milk’ 特征的异常值:

以下数据点被认为是 ‘Grocery’ 特征的异常值:

以下数据点被认为是 ‘Frozen’ 特征的异常值:

以下数据点被认为是 ‘Detergents_Paper’ 特征的异常值:

以下数据点被认为是 ‘Delicatessen’ 特征的异常值:

import matplotlib.pyplot as plt
 
      
z0 = (log_data - log_data.median())/(log_data.quantile(.75) - log_data.quantile(.25))
 
      
z1 = z0[(z0<=-2).any(axis=1)|(z0>=2).any(axis=1)]
z1.plot(figsize=(15,5),kind='bar')
plt.axhline(2, linewidth=0.2,color='k')
plt.axhline(-2, linewidth=0.2,color='k')
print(list(z1.index))

特征转换

在这个部分中你将使用主成分分析(PCA)来分析批发商客户数据的内在结构。由于使用PCA在一个数据集上会计算出最大化方差的维度,我们将找出哪一个特征组合能够最好的描绘客户。

主成分分析(PCA

既然数据被缩放到一个更加正态分布的范围中并且我们也移除了需要移除的异常点,我们现在就能够在good_data上使用PCA算法以发现数据的哪一个维度能够最大化特征的方差。

除了找到这些维度,PCA也将报告每一个维度的_解释方差比(explained variance ratio_–这个数据有多少方差能够用这个单独的维度来解释。

注意PCA的一个组成部分(维度)能够被看做这个空间中的一个新的特征,但是它是原来数据中的特征构成的。

在下面的代码单元中,将要实现下面的功能:

  • 导入 sklearn.decomposition.PCA 并且将 good_data 用 PCA() 函数并且使用6个维度进行拟合后的结果保存到pca中。
  • 使用 pca.transform() 函数将 log_samples 进行转换,并将结果存储到 pca_samples 中。
from sklearn.decomposition import PCA
 
      
# TODO: 通过在 good_data 上使用 PCA(),将其转换成和当前特征数一样多的维度
pca = PCA(n_components=6)
pca.fit(good_data)
 
      
# TODO: 使用上面的PCA拟合将变换施加在log_samples
pca_samples = pca.transform(log_samples)
 
      
# 生产PCA的结果图
pca_results = vs.pca_results(good_data, pca)

观察

运行下面的代码,查看经过对数转换的样本数据在进行一个6个维度的主成分分析(PCA)之后会如何改变。观察样本数据的前四个维度的数值。考虑这和你初始对样本点的解释是否一致

# 展示经过PCA转换的sample log-data
display(pd.DataFrame(np.round(pca_samples,4),columns=pca_results.index.values))

降维

当使用主成分分析的时候,一个主要的目的是减少数据的维度,这实际上降低了问题的复杂度。当然降维也是需要一定代价的:更少的维度能够表示的数据中的总方差更少。

因为这个,_累计解释方差比(cumulative explained variance ratio_对于我们确定这个问题需要多少维度非常重要。另外,如果大部分的方差都能够通过两个或者是三个维度进行表示的话,降维之后的数据能够被可视化。

在下面的代码单元中,将实现下面的功能:

  • 将 good_data 用两个维度的PCA进行拟合,并将结果存储到 pca 中去。
  • 使用 pca.transform 将 good_data 进行转换,并将结果存储在 reduced_data 中。
  • 使用 pca.transform 将 log_samples 进行转换,并将结果存储在 pca_samples 中。
# TODO:通过在good data上进行PCA,将其转换成两个维度
pca = PCA(n_components=2)
pca.fit(good_data)
 
      
# TODO:使用上面训练的PCAgood data进行转换
reduced_data = pca.transform(good_data)
 
      
# TODO:使用上面训练的PCAlog_samples进行转换
pca_samples = pca.transform(log_samples)
 
      
# 为降维后的数据创建一个DataFrame
reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])

观察

运行以下代码观察当仅仅使用两个维度进行PCA转换后,这个对数样本数据将怎样变化。观察这里的结果与一个使用六个维度的PCA转换相比较时,前两维的数值是保持不变的。

# 展示经过两个维度的PCA转换之后的样本log-data
display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2']))

4.5 机器学习聚类算法

聚类

在这个部分,你讲选择使用K-Means聚类算法或者是高斯混合模型聚类算法以发现数据中隐藏的客户分类。然后,你将从簇中恢复一些特定的关键数据点,通过将它们转换回原始的维度和规模,从而理解他们的含义。

创建聚类

针对不同情况,有些问题你需要的聚类数目可能是已知的。但是在聚类数目不作为一个 先验 知道的情况下,我们并不能够保证某个聚类的数目对这个数据是最优的,因为我们对于数据的结构(如果存在的话)是不清楚的。但是,我们可以通过计算每一个簇中点的 轮廓系数 来衡量聚类的质量。数据点的轮廓系数衡量了它与分配给他的簇的相似度,这个值范围在-1(不相似)到1(相似)。平均 轮廓系数为我们提供了一种简单地度量聚类质量的方法。

在接下来的代码单元中,将实现下列功能:

  • 在 reduced_data 上使用一个聚类算法,并将结果赋值到 clusterer
  • 使用 clusterer.predict() 函数预测 reduced_data 中的每一个点的簇,并将结果赋值到 preds
  • 使用算法的某个属性值找到聚类中心,并将它们赋值到 centers
  • 预测 pca_samples 中的每一个样本点的类别并将结果赋值到 sample_preds
  • 导入 sklearn.metrics.silhouette_score 包并计算 reduced_data 相对于 preds 的轮廓系数。
  • 将轮廓系数赋值给 score 并输出结果。
from sklearn.mixture import GaussianMixture
from sklearn.metrics import silhouette_score
 
       
# TODO: 在降维后的数据上使用您选择的聚类算法
for i in [2]:
    clusterer = GaussianMixture(n_components=i,random_state=3)
    clusterer.fit(reduced_data)
    
    # TODO: 预测每一个点的簇
    preds = clusterer.predict(reduced_data)
    
    # TODO: 找到聚类的中心点
    centers = clusterer.means_
    
    # TODO: 预测在每一个转换后的样本点的类
    sample_preds = clusterer.predict(pca_samples)
    
    # TODO: 计算选择的类别的平均轮廓系数 (mean silhouette coefficient)
    score = silhouette_score(reduced_data, preds)
    print(i,score)
2 0.446753526944537

聚类可视化

一旦你选好了通过上面的评价函数得到的算法的最佳聚类数目,你就能够通过使用下面的代码块可视化来得到的结果。作为实验,你可以试着调整你的聚类算法的聚类的数量来看一下不同的可视化结果。但是你提供的最终的可视化图像必须和你选择的最优聚类数目一致。

# 从已有的实现中展示聚类的结果
vs.cluster_results(reduced_data, preds, centers, pca_samples)

数据恢复

上面的可视化图像中提供的每一个聚类都有一个中心点。

这些中心(或者叫平均点)并不是数据中真实存在的点,但是是所有预测在这个簇中的数据点的 平均 

对于创建客户分类的问题,一个簇的中心对应于 那个分类的平均用户 。因为这个数据现在进行了降维并缩放到一定的范围,我们可以通过施加一个反向的转换恢复这个这个点所代表的用户的花费。

在下面的代码单元中,将实现下列的功能:

  • 使用 pca.inverse_transform() 函数将 centers 反向转换,并将结果存储在 log_centers 中。
  • 使用 np.log() 的反函数 np.exp 反向转换 log_centers 并将结果存储到 true_centers 中。
# TODO:反向转换中心点
log_centers = pca.inverse_transform(centers)
 
       
# TODO:对中心点做指数转换
true_centers = np.exp(log_centers)
 
       
# 显示真实的中心点
segments = ['Segment {}'.format(i) for i in range(0,len(centers))]
true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())
true_centers.index = segments
display(true_centers)

一个被分到 'Cluster X' 的客户最好被用 'Segment X' 中的特征集来标识的企业类型表示。

运行下面的代码单元以找到每一个样本点被预测到哪一个簇中去。

# 显示预测结果
for i, pred in enumerate(sample_preds):
    print('Sample point {} predicted to be in Cluster {}'.format(i,pred))

  • 首先,你要考虑不同组的客户 客户分类,针对不同的派送策略受到的影响会有什么不同。
  • 其次,你要考虑到,每一个客户都被打上了标签(客户属于哪一个分类)可以给客户数据提供一个多一个特征。
  • 最后,你会把客户分类与一个数据中的隐藏变量做比较,看一下这个分类是否辨识了特定的关系。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑神666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值