【深度学习笔记】Task1 神经网络计算


学习自: https://www.bilibili.com/video/BV1B7411L7Qt?p=1
之前跟的天池的一个学习视频,但是由于tensorflow版本问题,加上在代码讲解部分不够细致所以更换了课程。
强烈安利现在的课程,授课人是北京大学软件与微电子学院的曹健老师,整个课程深入浅出,对于代码部分介绍十分细致,很适合我这种刚想入门tensorflow的小白。第一次见弹幕一直在不由自主各种感叹老师教的真好的哈哈,确实讲的太好了,吐血安利!!!!

1.1人工智能三学派

通过神经网络可以使计算机具有感性思维
在这里插入图片描述
基于连接主义的神经网络设计过程
随着我们成长,神经网络连线上的权重发生了变化,有些线上权重增加,有些线上权重减弱
在这里插入图片描述

准备数据-》搭建网络-》优化参数-》应用网络在这里插入图片描述


1.2初认神经网络设计过程-鸢尾花分类问题

神经网络通过大量输入特征和标签构成数据集
在这里插入图片描述
输入:花瓣长、花瓣宽、花萼长、花萼宽
输出:三种类别
在这里插入图片描述
这是一个全连接网络,随机初始化w和b
在这里插入图片描述
输出的y中哪个得分最高,便将其归到哪一类,这里鸢尾花的实际标签为0但是根据输出结果被判断成了1,这是因为一开始w和b都是随机初始化的,因此需要用到损失函数来不断寻找最优值
在这里插入图片描述
目的:寻找一组w和b使得损失函数最小
在这里插入图片描述
从图中可以看出W=-1时候的损失函数最小
在这里插入图片描述

import tensorflow as tf 

#设置参数w的随机初始值为5,设定为可训练(即vaiable形式?)
w = tf.Variable(tf.constant(5, dtype=tf.float32))
#学习率
lr=0.2
#循环次数
epoch=40 

for epoch in range(epoch):
    with tf.GradientTape() as tape:#with结构到grad框起到了梯度计算的过程
        loss=tf.square(w+1) #损失函数定义为w+1的平方
    grads=tape.gradient(loss,w)#gradinet函数告知对谁求导
    
    w.assign_sub(lr*grads) #assign_sub做自减,即w-=
    print("After %s epoch,w is %f,loss is %f" % (epoch, w.numpy(), loss))

在这里插入图片描述

#可以发现w为-1时候损失函数值最小
#可以尝试更改lr,可以发现lr过小的时候迭代太慢,lr过大的时候一直在最优值跳动找不到最优值


1.3 张量生成

tensorflow中的tensor就是张量,是多维数组(多维列表),用阶来表示张量的维数,判断张量是几阶的可以看有几个方括号
在这里插入图片描述
tensorflow中的数据类型
在这里插入图片描述
图和创建一个张量tensor
在这里插入图片描述

import tensorflow as tf
a=tf.constant([1,5],dtype=tf.int64)
#直接打印a,会输出a的所有信息
print(a)

#打印a的数据类型
print(a.dtype) 

#打印a的形状
print(a.shape)

很多时候数据是用numpy给出的,可以通tf.convert_to_tensor(数据名,dtype=数据类型(可选))将其转化为tensor数据类型

import tensorflow as tf 
import numpy as np
a=np.arange(0,5)
b=tf.convert_to_tensor(a,dtype=tf.int64)
print(a) 
print(b)

结果为
[0 1 2 3 4]
tf.Tensor([0 1 2 3 4], shape=(5,), dtype=int64)

其他张量创建方法


#创建全为0的张量
tf.zeros(维度)

#创建全为1的张量
tf.ones(维度)

#创建全为指定值的张量
tf.fill(维度,指定值)

注意对于维度:
一维直接写个数
二维用【行,列】
多维用【m,j,k…】

a=tf.zeros([2,3])
b=tf.ones(4)
c=tf.fill([2,2],9)
print(a)
print(b)
print(c)

在这里插入图片描述
生成随机数

  • 生产正态分布的随机数,默认均值为0,标准差为1
tf.random.normal(维度,mean=均值,stddev=标准差)

如果希望生成的随机数更集中可以采用截断式正态分布,可以保证生成的数在两倍标准差之内

  • 生成截断式正态分布的随机数
tf.random.truncated_normal(维度,mean=均值,stddev=标准差)
  • 生成均匀分布随机数[minval,maxval),注意是前闭后开

tf.random.uniform(维度,minval=最小值,maxval=最大值)

在这里插入图片描述

d=tf.random.normal([2,2],mean=0.5,stddev=1)
print(d)
e=tf.random.truncated_normal([2,2],mean=0.5,stddev=1)
print(e)
f=tf.random.uniform([2,2],minval=0,maxval=1)
print(f)

结果为
tf.Tensor(
[[1.3626552 0.5091892]
 [1.1865652 0.5751934]], shape=(2, 2), dtype=float32)
tf.Tensor(
[[ 0.99196833  1.0803022 ]
 [ 0.2839067  -0.18373096]], shape=(2, 2), dtype=float32)
tf.Tensor(
[[0.5610157  0.6162615 ]
 [0.783057   0.71171486]], shape=(2, 2), dtype=float32)

常用函数

  • 强制tensor转换为该数据类型

tf.cast(张量名,dtype=数据类型 )

  • 计算张量维度上元素的最小值

tf.reduce_min(张量名)

  • 计算张量维度上的元素最大值

tf.reduce_max(张量名)

x1=tf.constant([1.,2.,3.],dtype=tf.float64)
print(x1)
x2=tf.cast(x1,tf.int32)
print(tf.reduce_min(x2),'\n',tf.reduce_max(x2))

结果为:
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor(1, shape=(), dtype=int32) 
tf.Tensor(3, shape=(), dtype=int32)
  • 理解axis
    axis可以指定操作的方向,在一个二维张量或数组中,可以通过调整axis=0或者1来控制维度,如果不指定axis则对所有元素进行操作
    axis=0 纵向,经度方向
    axis=1 横向,维度方向
    在这里插入图片描述
    • 计算张量沿着指定方向的平均值
      tf.reduce_mean(张量名,axis=操作轴)

    • 计算张量沿着指定维度的和
      tf.reduce_sum(张量名,axis=操作轴)

x=tf.constant([[1,2,3],[1,2,3]])
print(x)
print(tf.reduce_mean(x)) #因为没有指定方向所以对所有元素尽心操作
print(tf.reduce_sum(x,axis=1))

结果为
tf.Tensor(
[[1 2 3]
 [1 2 3]], shape=(2, 3), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor([6 6], shape=(2,), dtype=int32)
  • tf.Variable
    tf.Variable()将变量标记为“可训练”tf.Variable(初始值),被标记的变量会再反向传播中记录梯度信息。神经网络训练中,常用该函数标记待训练参数w=tf.Variable(tf.random.normal([2,2],mean=0,stddev=1))(首先生成正态分布的随机数,再给随机数标记为可训练,这样就可以再反向传播中通过梯度更新w了)
  • Tensorflow中的数学运算
    • 对应元素的四则运算(注意只有维度相同的张量才可以做四则运算):tf.add,tf.subtract,tf.multiply,tf.divide
      在这里插入图片描述
    • 平方、次方与开方:tf.square,tf.pow,tf.sqrt
      在这里插入图片描述
    • 矩阵乘:tf.matmul
      在这里插入图片描述
a=tf.ones([1,3])
b=tf.fill([1,3],3.)
print(a)
print(b)
print(tf.add(a,b))
print(tf.subtract(a,b))
print(tf.multiply(a,b))
print(tf.divide(b,a))

结果为
tf.Tensor([[1. 1. 1.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[4. 4. 4.]], shape=(1, 3), dtype=float32)
tf.Tensor([[-2. -2. -2.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
  • from_tensor_slices切分传入张量的第一维度,生成输入标签特征/标签对,构建数据集
data=tf.data.Dataset.from_tensor_slices((输入特征标签))

numpy和tensor格式都可以用该语句读入数据

features=tf.constant([12,23,10,17])
labels=tf.constant([0,1,1,0])
dataset=tf.data.Dataset.from_tensor_slices((features,labels)) #把特征和标签配对
print(dataset)
for element in dataset:
    print(element)

在这里插入图片描述

  • tf.GradientTape实现函数求导过程
with tf.GradientTape() as tape:
    若干计算过程 
grad=tape.gradient(函数,对谁求导)

配合上Vaiable函数就可以实现对参数w的求导

with tf.GradientTape()as tape:
    w=tf.Variable(tf.constant(3.0))
    loss=tf.pow(w,2)#损失函数为w的平方
grad=tape.gradient(loss,w)
print(grad)

结果为:
tf.Tensor(6.0, shape=(), dtype=float32)

损失函数为w的平方,求导后为2w,所以这里结果应该是6
在这里插入图片描述

  • enumerate
    enumerate是python的内建函数,它可以遍历每个元素(如列表、元组或字符串),组合为:索引 元素,常在for循环中使用,enumerate(列表名)
seq=['one','two','three']
for i,element in enumerate(seq):#i用来接收索引,element用来接收元素
    print(i,element)

结果为:
0 one
1 two
2 three
  • 独立热编码tf.one_hot
    在分类问题中,常用独热码做标签,标记类别,1表示是,0表示非
    例如对于标签1可以用010表示,表示是狗尾草鸢尾的概率为0,杂色鸢尾的概率为1,弗吉尼亚鸢尾概率为0
    在这里插入图片描述
    格式 tf.ont_hot(待转换数据,depth=几分类)
classes=3
labels=tf.constant([1,0,2])
output=tf.one_hot(labels,depth=classes)
print(output)

结果为
tf.Tensor(
[[0. 1. 0.]
 [1. 0. 0.]
 [0. 0. 1.]], shape=(3, 3), dtype=float32)
  • 通过tf.nn.softmax(x)使得输出函数符合概率分布
    对于鸢尾花数据计算出来的得分是1.01,2.01,-0.66,显然是不符合概率分布的,可以通过tf.nn.softmax(x)对其进行转换

在这里插入图片描述
在这里插入图片描述

  • assign_sub函数
    • 赋值操作,更新参数的值并返回
    • 调用assign_sub前,先用tf.Variable定义变量w为可训练(可自更新)
      w.assign_sub(w要自减的内容)
w=tf.Variable(4) #先被定义为可训练的类型
w.assign_sub(1)
print(w)

结果为:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3
  • tf.argmax函数,用于返回张量沿指定维度最大的索引
    tf.argmax(张量,axis=操作轴)
import numpy as np
test=np.array([[1,2,3],[2,3,4],[5,4,3],[8,7,2]])
print(test)
print(tf.argmax(test,axis=0))#返回每一列(经度)最大值索引
print(tf.argmax(test,axis=1))#返回每一行(纬度)最大值索引

结果为
[[1 2 3]
 [2 3 4]
 [5 4 3]
 [8 7 2]]
tf.Tensor([3 3 1], shape=(3,), dtype=int64)
tf.Tensor([2 2 0 0], shape=(4,), dtype=int64)

1.4 鸢尾花分类问题实战

1.4.1 了解鸢尾花数据

在这里插入图片描述
可以直接从sklearn包的datasets中直接下载数据(如果使用的是pychart在terminal中安装相关包)

#导入相关包
from sklearn.datasets import load_iris#导入数据集
from pandas import DataFrame
import pandas as pd 


x_data=load_iris().data #返回iris数据集的所有输入
y_data=load_iris().target  #返回iris数据集中所有标签


x_data=DataFrame(x_data,columns=['花萼长度','花萼宽度','花瓣长度','花萼宽度'])
pd.set_option('display.unicode.east_asian_width',True) #设置列名对其

x_data['类别']=y_data #添加一列,列标签为列表
x_data

在这里插入图片描述

1.4.2 神经网络实现鸢尾花数据分类

  • 准备数据
    • 数据集读入
    • 数据集乱序
    • 生产训练集和测试集
    • 配成(输入特征,标签)对,每次读入一小撮(batch)
  • 搭建网络
    • 定义神经网络中所有可训练参数
  • 参数优化
    • 嵌套循环迭代,with结构更新参数,显示当前loss
  • 测试效果
    • 计算当前参数前向传播后的准确率,显示当前acc
  • acc/loss可视化
# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
%matplotlib inline
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

#定义超参数
lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1#计算前向传播预测结果
        y = tf.nn.softmax(y)#变为概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

损失函数
在这里插入图片描述

acc准确率 计算正确的占总数的
在这里插入图片描述

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值