/*
HDU - 6050
题目大意就是
要你用给你三个关系式然后给你n,m要你求F(m,1)
看题解后F(1,n)=F(1,n-1)+2*F(1,n-2)可以用特征根方程求得F(1,n)的通项公式
所谓特征根方程简单点就是
下标为n的x的次数就是0,+1就是一次方,-1就是-1次方以此类推
所以这题的特征根方程为:x^2=x+2
解得x1=2,x2=-1.
然后因为Fn=ax1^n+bx2^n.(网上搜到的,配套使用)
根据F1=F2=1(带人上式求解,a、b)
解得F(1,n)=2^n/3-(-1)^n/3.
然后我们可以根据第三个式子求得(可以看成两个等比数列求和)
F(2,1)=(2*(2^n-1)+(1-(-1)^n)/2)/3
F(2,2)=(4*(2^n-1)-(1-(-1)^n)/2)/3
F(2,2)就是把首项换成F(1,2)尾项是F(1,n+1)
然后可以发现规律
F(2,n)=(2^n*(2^n-1)+(-1)^n*(1-(-1)^n)/2)/3
其中因为(2^n-1)和(1-(-1)^n)/2在n给出后求F(2,1)时就已经确定了
所以我们需要把它当做常量,那么我们要求的就是(2^n*k1+(-1)^n*k2)/3的和
然后继续根据第三个式子求出(还是两个等比数列求和)
F(3,1)=(2*(2^n-1)^2+(1-(-1)^n)/2)/3
依次类推
F(m,1)=(2*(2^n-1)^(m-1)+(1-(-1)^n)/2)/3
然后求个逆元用个快速幂就行
*/
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <string.h>
#define ll long long
#define mod 1000000007
using namespace std;
ll quickpow(ll n,ll a)
{
ll ans=1;
while(a>=1)
{
if(a&1)
ans=ans*n%mod;
a=a>>1;
n=n*n%mod;
}
return ans;
}
void Ex_gcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;
y=0;
return ;
}
ll x1,y1;
Ex_gcd(b,a%b,x1,y1);
x=y1;
y=x1-(a/b)*y1;
}
int main()
{
int t;
cin>>t;
while(t--)
{
ll n,m;
scanf("%lld%lld",&n,&m);
int res=0;
if(n%2)
res=1;
ll ans=quickpow(2,n)%mod-1;
ans=quickpow(ans,(m-1))%mod;
ans=(ans*2)%mod;
ans+=res;
ll x,y;
Ex_gcd(3,mod,x,y);
x=(x%mod+mod)%mod;
ans=ans*x;
printf("%lld\n",ans%mod);
}
return 0;
}
HDU - 6050
题目大意就是
要你用给你三个关系式然后给你n,m要你求F(m,1)
看题解后F(1,n)=F(1,n-1)+2*F(1,n-2)可以用特征根方程求得F(1,n)的通项公式
所谓特征根方程简单点就是
下标为n的x的次数就是0,+1就是一次方,-1就是-1次方以此类推
所以这题的特征根方程为:x^2=x+2
解得x1=2,x2=-1.
然后因为Fn=ax1^n+bx2^n.(网上搜到的,配套使用)
根据F1=F2=1(带人上式求解,a、b)
解得F(1,n)=2^n/3-(-1)^n/3.
然后我们可以根据第三个式子求得(可以看成两个等比数列求和)
F(2,1)=(2*(2^n-1)+(1-(-1)^n)/2)/3
F(2,2)=(4*(2^n-1)-(1-(-1)^n)/2)/3
F(2,2)就是把首项换成F(1,2)尾项是F(1,n+1)
然后可以发现规律
F(2,n)=(2^n*(2^n-1)+(-1)^n*(1-(-1)^n)/2)/3
其中因为(2^n-1)和(1-(-1)^n)/2在n给出后求F(2,1)时就已经确定了
所以我们需要把它当做常量,那么我们要求的就是(2^n*k1+(-1)^n*k2)/3的和
然后继续根据第三个式子求出(还是两个等比数列求和)
F(3,1)=(2*(2^n-1)^2+(1-(-1)^n)/2)/3
依次类推
F(m,1)=(2*(2^n-1)^(m-1)+(1-(-1)^n)/2)/3
然后求个逆元用个快速幂就行
*/
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <string.h>
#define ll long long
#define mod 1000000007
using namespace std;
ll quickpow(ll n,ll a)
{
ll ans=1;
while(a>=1)
{
if(a&1)
ans=ans*n%mod;
a=a>>1;
n=n*n%mod;
}
return ans;
}
void Ex_gcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;
y=0;
return ;
}
ll x1,y1;
Ex_gcd(b,a%b,x1,y1);
x=y1;
y=x1-(a/b)*y1;
}
int main()
{
int t;
cin>>t;
while(t--)
{
ll n,m;
scanf("%lld%lld",&n,&m);
int res=0;
if(n%2)
res=1;
ll ans=quickpow(2,n)%mod-1;
ans=quickpow(ans,(m-1))%mod;
ans=(ans*2)%mod;
ans+=res;
ll x,y;
Ex_gcd(3,mod,x,y);
x=(x%mod+mod)%mod;
ans=ans*x;
printf("%lld\n",ans%mod);
}
return 0;
}