HDU - 6050(推公式、矩阵快速幂)

/*
    HDU - 6050
    题目大意就是
    要你用给你三个关系式然后给你n,m要你求F(m,1)


    看题解后F(1,n)=F(1,n-1)+2*F(1,n-2)可以用特征根方程求得F(1,n)的通项公式
    所谓特征根方程简单点就是
    下标为n的x的次数就是0,+1就是一次方,-1就是-1次方以此类推
    所以这题的特征根方程为:x^2=x+2
    解得x1=2,x2=-1.
    然后因为Fn=ax1^n+bx2^n.(网上搜到的,配套使用)
    根据F1=F2=1(带人上式求解,a、b)
    解得F(1,n)=2^n/3-(-1)^n/3.


    然后我们可以根据第三个式子求得(可以看成两个等比数列求和)
    F(2,1)=(2*(2^n-1)+(1-(-1)^n)/2)/3
    F(2,2)=(4*(2^n-1)-(1-(-1)^n)/2)/3
    F(2,2)就是把首项换成F(1,2)尾项是F(1,n+1)
    然后可以发现规律
    F(2,n)=(2^n*(2^n-1)+(-1)^n*(1-(-1)^n)/2)/3
    其中因为(2^n-1)和(1-(-1)^n)/2在n给出后求F(2,1)时就已经确定了
    所以我们需要把它当做常量,那么我们要求的就是(2^n*k1+(-1)^n*k2)/3的和


    然后继续根据第三个式子求出(还是两个等比数列求和)
    F(3,1)=(2*(2^n-1)^2+(1-(-1)^n)/2)/3
    依次类推
    F(m,1)=(2*(2^n-1)^(m-1)+(1-(-1)^n)/2)/3


    然后求个逆元用个快速幂就行
*/
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <string.h>
#define ll long long
#define mod 1000000007
using namespace std;


ll quickpow(ll n,ll a)
{
    ll ans=1;
    while(a>=1)
    {
        if(a&1)
            ans=ans*n%mod;
        a=a>>1;
        n=n*n%mod;
    }
    return ans;
}
void Ex_gcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return ;
    }
    ll x1,y1;
    Ex_gcd(b,a%b,x1,y1);
    x=y1;
    y=x1-(a/b)*y1;
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        ll n,m;
        scanf("%lld%lld",&n,&m);
        int res=0;
        if(n%2)
            res=1;
        ll ans=quickpow(2,n)%mod-1;
        ans=quickpow(ans,(m-1))%mod;
        ans=(ans*2)%mod;
        ans+=res;
        ll x,y;
        Ex_gcd(3,mod,x,y);
        x=(x%mod+mod)%mod;
        ans=ans*x;
        printf("%lld\n",ans%mod);


    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值