tf.keras.callbacks.TensorBoard分析训练过程

logs = "/logs/ce_tboard"
tboard_callback = tf.keras.callbacks.TensorBoard(log_dir = logs,
                                                 update_freq = 10000,
                                                 profile_batch = 2)

model.compile(tf.keras.optimizers.Adam(lr=0.01), loss='binary_crossentropy', metrics=METRICS)
model.fit(train_data, epochs=1, callbacks = [tboard_callback])

 运行以下命令,在浏览器输入地址即可。

%tensorboard --logdir=logs

 tf.keras.callbacks.TensorBoard的参数:

  • log_dir:保存TensorBoard要解析的日志文件的目录路径。
  • histogram_freq:默认为0。计算模型各层的激活值和权重直方图的频率(以epoch计)。如果设置为0,将不会计算直方图。若想直方图可视化,必须指定验证数据(或分割验证集)。
  • write_graph:默认为True。是否在TensorBoard中可视化图形。当设置为True时,日志文件会变得非常大。
  • write_images:默认为False。是否写入模型权重,在TensorBoard中将权重可视化为图像。
  • update_fre
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值