logs = "/logs/ce_tboard"
tboard_callback = tf.keras.callbacks.TensorBoard(log_dir = logs,
update_freq = 10000,
profile_batch = 2)
model.compile(tf.keras.optimizers.Adam(lr=0.01), loss='binary_crossentropy', metrics=METRICS)
model.fit(train_data, epochs=1, callbacks = [tboard_callback])
运行以下命令,在浏览器输入地址即可。
%tensorboard --logdir=logs
tf.keras.callbacks.TensorBoard的参数:
- log_dir:保存TensorBoard要解析的日志文件的目录路径。
- histogram_freq:默认为0。计算模型各层的激活值和权重直方图的频率(以epoch计)。如果设置为0,将不会计算直方图。若想直方图可视化,必须指定验证数据(或分割验证集)。
- write_graph:默认为True。是否在TensorBoard中可视化图形。当设置为True时,日志文件会变得非常大。
- write_images:默认为False。是否写入模型权重,在TensorBoard中将权重可视化为图像。
- update_fre