学习笔记(十):PCA投影

17 篇文章 1 订阅

  PCA主成分分析,用于结合I和Q信号的技术。可将二维数据转换为一维数据,抑制冗余信息,最大限度地提高数据方差。
本文目标:

PCA方法寻找CSI商序列的最大投影方向:
输入:30个子载波上的CSI商
输出:30个子载波各自的最大投影方向 p ( θ ) ⃗ = [ c o s ( θ )      s i n ( θ ) ] \vec{p(\theta)}=[cos(\theta) \,\,\,\, sin(\theta)] p(θ) =[cos(θ)sin(θ)]

1. PCA原理

背景概述:

  在多变量大数据集的背景下,许多变量存在相关性,要想既完全利用数据中的信息又降低分析的复杂度,可以用PCA进行降维和特征提取。

总体思想:

  将关系紧密的变量变成尽可能少的两两不相关的新变量,从而用较少的综合指标去代表存在于各个变量中的各类信息。
  考虑本文目标,即利用PCA将2维样本映射到1维特征上。并使得二维样本点在 p ( θ ) ⃗ \vec{p(\theta)} p(θ) 上的一维特征方差尽可能大。

PCA处理二维(高维)数据的案例学习:
对于2*10的一组二维数据:
X = [ 2.5 , 0.5 , 2.2 , 1.9 , 3.1 , 2.3 , 2.0 , 1.0 , 1.5 , 1.1 ] T Y = [ 2.4 , 0.7 , 2.9 , 2.2 , 3.0 , 2.7 , 1.6 , 1.1 , 1.6 , 0.9 ] T \begin{array}{l} \mathrm{X}=[2.5,0.5,2.2,1.9,3.1,2.3,2.0,1.0,1.5,1.1] ^\mathrm{T} \\ \mathrm{Y}=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9] ^\mathrm{T} \end{array} X=[2.5,0.5,2.2,1.9,3.1,2.3,2.0,1.0,1.5,1.1]TY=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9]T有:
cov ⁡ ( X , Y ) = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) n − 1 \operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1} cov(X,Y)=n1i=1n(XiXˉ)(YiYˉ)
注意,一般计算协方差矩阵前,会进行样本矩阵中心化,即每一维度减去该维度的均值,然后用新的样本矩阵乘其转置,然后除以(N-1)。

n维数据需要计算 n ! ( n − 2 ) ! ∗ 2 \frac{n !}{(n-2) ! * 2} (n2)!2n!个协方差,即协方差矩阵: C n × n = ( c i , j , c i , j = cov ⁡ ( Dim ⁡ i , Dim ⁡ j ) ) C_{n \times n}=\left(c_{i, j}, c_{i, j}=\operatorname{cov}\left(\operatorname{Dim}_{i}, \operatorname{Dim}_{j}\right)\right) Cn×n=(ci,j,ci,j=cov(Dimi,Dimj))

对于上述二维数组,利用np.cov(X,Y)可以得到:
cov ⁡ = ( 0.616555556 0.615444444 0.615444444 0.716555556 ) \operatorname{cov}=\left(\begin{array}{ll} 0.616555556 & 0.615444444 \\ 0.615444444 & 0.716555556 \end{array}\right) cov=(0.6165555560.6154444440.6154444440.716555556)
在这里插入图片描述

接下来,计算其特征向量与特征值。
 eigenvalues  = ( 0.0490833989 1.28402771 )  eigenvectors  = ( − . 735178656 0.677873399 0.677873399 0.735178656 ) \begin{array}{c} \text { eigenvalues }=\left(\begin{array}{c} 0.0490833989 \\ 1.28402771 \end{array}\right) \\ \text { eigenvectors }=\left(\begin{array}{cc} -.735178656 & 0.677873399 \\ 0.677873399 & 0.735178656 \end{array}\right) \end{array}  eigenvalues =(0.04908339891.28402771) eigenvectors =(.7351786560.6778733990.6778733990.735178656)
在这里插入图片描述
  特征向量即单位矢量,特征值越大,说明主成分越重要,PCA后的方差 [1.28402771]。考虑第二个特征值对应的特征向量(按列看)。
  用该 特 征 向 量 1 x 2 特征向量_{1x2} 1x2 · 原 始 二 维 样 本 2 x 10 原始二维样本_{2x10} 2x10得到维度为1维的向量。从而实现了方差最大的投影。
在这里插入图片描述

2. PCA用途的一些思考

局限性:仅能寻找不完整的CSI商弧线上的CSI投影,适用于呼吸、手势细粒度运动场景,理论上不适用于定位等场景。
实现方法:

输入:T1的CSI商复数序列,其实部和虚部分别可以看作X,Y。
输出:T
1的归一化后的实数投影序列

ToDo:找几篇关于PCA和CSI有关的论文进一步了解PCA在MIMO中的应用。

from sklearn.decomposition import PCA
import numpy as np
X = np.array([2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2.0, 1.0, 1.5, 1.1]).T
Y = np.array([2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]).T
pca = PCA(n_components='mle')
pca.fit(l)
print('PCA后的方差', pca.explained_variance_)
print('fit_transform是fit和transform的组合,既包括了训练又包含了转换,注意此处的数据归一化过了:', '\n', pca.transform(l).T)
l = np.array([X, Y]).T
# sklearn PCA的方差和前面求得的方差一样
# 后续针对PCA后的CSI商序列进行BNR求解即可
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值