题目
批量初始化:
某部门在开发一个代码分析工具,需要分析代码模块之间的依赖关系,用来确定模块的初始化顺序、是否有循环依赖等问题。“批量初始化”是指次可以初始化一个或多个模块。例如模块1依赖模块2模块3也依赖模块2,但模块1和3没有依赖关系。则必须先“批量初始化“模块2,再”批量初始化”模块1和3。现给定一组模块间的依赖关系,请计算需要”批量初始化”的次数。
每一个模块,包含自己的id,和其父亲id。
解答要求(经过2-2的洗礼发现解答要求很重要)
时间限制: C/C++ 1000ms,其他语言: 2000ms
内存限制:C/C++ 256MB,其他语言:512MB
输入
(1)第1行只有一个数字,表示模块总数N。
(2)随后的N行依次表示模块1到N的依赖数据。每行的第1个数据表示 依赖的模块数量 (不会超过N),之后的数字表示当前模块依赖的模块ID序列,该序列不会重复出现相同的数字,模块ID的取值一定在[1,N]之内。
(3)模块总数N取值范围 1<=N<=1000。
(4)每一行里面的数字按1个空格分隔
输出
输出”批量初始化次数”;
若有循环依赖无法完成初始化,则输出-1;
样例
输入:
5
3 2 3 4
1 5
1 5
1 5
0
输出: 3
解释:共5个模块。模块1依赖模块2、3、4;模块2依赖模块5;模块3依赖模块5;模块4依赖模块5;模块5没有依赖任何模块批量初始化顺序为(5)-2,3,4-1,共需”批量初始化"3次。
思路
拓扑排序:广度优先+贪心
算法流程 :
1、在开始排序前,扫描对应的存储空间(使用邻接表),将入度为 0 的结点放入队列。
2、只要结点队列非空,就从队首取出入度为 0 的结点,将这个结点输出到结果集中,并且将这个结点的所有邻接结点(它指向的结点)的入度减 1,在减 1 以后,如果这个被减 1的结点的入度为 0 ,就继续入队。
3、当队列为空的时候,检查结果集中的顶点个数是否和课程数相等即可。
在代码具体实现的时候,除了保存入度为 0 的队列,还需要两个辅助的数据结构
1、邻接表:通过结点的索引,我们能够得到这个结点的子结点;
2、入度数组:通过结点的索引,我们能够得到指向这个结点的结点个数。
代码
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
int main() {
int n;
cin >> n;
vector<vector<int>> nxs(n); // nxs[i] 存放结点i的子结点
vector<int> indegree(n); //indergree[i] 表示结点i的入度
for (int i = 0; i < n; i++) {
int nums; cin >> nums;
indegree[i] = nums;
for (int j = 0; j < nums; j++) {
int parent; cin >> parent;
int parentpos = parent-1; //注意结点id是输入值-1
nxs[parentpos].push_back(i);
}
}
queue<int> q; // 存放入度为0的结点
for (int i = 0; i < n; i++) {
if (indegree[i] == 0) {q.push(i);}
}
int cnt = 0, deletenum = 0;
while(!q.empty()) { // 只要结点队列非空
cnt++; //轮次记录
int len=q.size();
deletenum += len; //被消除的节点数目
for (int i = 0; i < len; i++) { // 对所有度为0的结点
int cur = q.front(); q.pop(); // 当前度为0的结点
for (int nx : nxs[cur]) { // 遍历其所有子结点
indegree[nx]--; // 子结点度-1
if (indegree[nx] == 0) {
q.push(nx);
} //如果
}
}
}
if (deletenum == n) cout << cnt << endl;
else cout << -1 << endl; // deletenum != n ,存在结点集无法被初始化(存在环路了)
return 0;
}
该题型还包括LC207课程表和LC210课程表II