2023九坤投资暑期实习笔试复盘

  • 5.22号笔试,5.24确认自己笔试挂。想想这也是自己第一次做量化私募基金的笔试,在此复盘一下。
  • 情况:准备暑期准备的比较晚,4月初才开始一边刷题一边投简历,所以手撕算法不太强,靠运气和灵感才能过笔试和技术二面。
  • 投递岗位:策略组合管理实习生
  • 身边同学有投递数据中台开发实习生岗位的,据他口述是若干选择题、4道简答题、2道算法题,他只记得简答题,数据中台开发实习生岗位部分题目回忆如下:
    在这里插入图片描述

考试情况和题目说明

  1. 考试情况:双机位
  2. 策略组合管理实习生题量说明:

    4道选择题
    2道推理填空题
    2道概率论数理统计的填空题
    1道编程题

    PS: 前面的题挺考验数学功底的,编程题思路比较简单,但用动态规划超C++运行时间和内存限制了,头疼没有去优化,编程题0%交卷。

试卷(根据计算草稿回忆版)

  1. python中有序数组的二分法查战工貝bisect,bisect_left/bisect_right方法在有序数组中查找使用二分法查找目标idx,该方法 计算的时间复杂度为(),工具包中使用insort_left/insort_right可以后续的插入工作,该方法的时间复杂度为()

    搜索是 O(log n) 的,插入是 O(n) 的。

  2. 同事家有两个孩子,但是男女不知道,若其中一个是个男孩,那么另一个也是男孩的概率是多少?

    这题我理解的独立,写了0.5。但网上答案给的1/3,我理解的1/3对应的提问是:已知至少有一个男孩,求两个都是男孩的概率。

  3. 12 个外观完全一样的金属小球,有 11 个小球质量相同,有 1 个小球或轻或重,现在只有一个天平,那么最少需要多少次称显才能准确找到这个不一样的小球?

    3次。先两边各放4个

  4. float32数据类型可以精确的表示下列哪个小数() PS:选项{0.1,0.3,0.8,0.5}

    浮点数精度会丢失,float32是一种32位浮点数据类型,使用23位表示尾数(小数部分)和8位表示指数。
    在这里插入图片描述
    a 符号位: 1代表负数, 0代表正数。
    b 指数部分:8个比特位, 全0和全1有特殊用途,所以是00000001~11111110, 也就是1到254, 减去偏置127,指数部分最终范围为-126 ~127.
    c 小数部分, 23个比特位, 范围为 ( 0 − − 2 23 − 1 ) / 2 23 \left(0--2^{23}-1\right) / 2^{23} (02231)/223
    数据的计算方式为: ( − 1 ) sign  ∗ 2 exponent-127  ∗ ( 1 +  fraction  2 23 ) (-1)^{\text {sign }} * 2^{\text {exponent-127 }} *\left(1+\frac{\text { fraction }}{2^{23}}\right) (1)sign 2exponent-127 (1+223 fraction )
    所以,仅考虑2指数*(1+分数的情况),能够表示的数应该是0.5

  5. 一个10*10的方形格子,去掉左上角右下角的各一个格子后能否用1*2的格子填满,有多少完美填法

    组合数学里的完美覆盖问题,根据完美覆盖问题充分必要条件的结论:m*n棋盘有b格牌的完美覆盖当且仅当b或者是m的一个因子或者是n的一个因子。问题转化为能否分割为多个满足2是因子的格子。答案应该是否。

  6. 假设摩托车油箱加满油之后,可以跑100公里。假设有两个人骑摩托车同行,他们油箱间的油通用。这两个人协作,能达到最远的距离有多远? 如果队伍变大,有100个人的情况下,最远能到多远?

    两个人只需要走到50km时,把其中一人的油箱全部装满即可,100*(1+1/2)
    n个人同样的思路,考虑每次让剩余的人的邮箱填满,n*(1+1/2+…+1/n)
    注意:由于这个级数不收敛无法用统一公式计算,只能暴力或者夹逼得到一个近似值
    PPS:这里我不知道能写代码算,开始没想起来可以用笔记本上的idle

  7. 一副扑克牌,包括大小总共有54张牌。做又放回的随机抽取,每张扑克牌都至少出现一次时的抽取次数记为X,求X的期望值

    可以采用递推的思想解决问题。记 f ( i ) f(i) f(i)表示还有 i i i个没抽到,初始化 f ( 54 ) = 0 f(54)=0 f(54)=0 f ( i − 1 ) = f ( i ) + i n f(i-1)=f(i)+\frac{i}{n} f(i1)=f(i)+ni表示下一次抽取到了n个球中的这i个之一的概率,即在已经获得i-1张牌的情况下,抽到新牌的概率i/n。所求期望即
    f ( 0 ) = 54 ( 1 + 1 2 + 1 3 + ⋯ + 1 54 ) = 这里我又没算出来 f(0)=54\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{54}\right)= 这里我又没算出来 f(0)=54(1+21+31++541)=这里我又没算出来

  8. (0,1] 上的均匀分布。取三个数,求这三个数代表的长度能够构成三角形的概率,进一步的,三个长度构成的是锐角三角形的概率是多少?

    x + y = z , x + z = y , y + z = x x+y=z, x+z=y, y+z=x x+y=z,x+z=y,y+z=x 三个平面去切单位正方体,求得立体体积为 1 / 2 1 / 2 1/2

  9. 给你 k \mathrm{k} k 枚相同的鸡蛋,并可以使用一标从第 1 层到第 n \mathrm{n} n 层共有 n \mathrm{n} n 层 楼的建筑。已知存在楼层 f f f, 满足 0 < = f < = n 0<=f<=n 0<=f<=n, 任何从高于 f f f 的楼层愘 下的鸡蛋都会碎,从搂层或比它低的楼丛落下的欢哥都不会破。 每次操作, 你可以取一枚没有碎的鸡蛋并要它从任一楼层 x x x 扔下 (满 足 1 < = x < = n 1<=x<=n 1<=x<=n ) 。如果鸡蛋碎了, 你就不能再次使用它。如果某板鸡 蛋扔下后没有熟碎, 则可以在之后的操作中重复使用这放鸠㿿。 请你计算并返回要确定 f \mathrm{f} f 确切的值的最小操作次数是多少? 其中 1 < = k < = 100 , 1 < = n < = 1 0 4 1<=k<=100,1<=n<=10^4 1<=k<=100,1<=n<=104
    注意: 时间限制:C/C++2秒,空间限制:C/C++ 262144K

    动态规划超时寄了,有时间就来回头练一下这题,写个解析

<think>嗯,用户需要的是NOIP 2003普及组乒乓球问题的C语言解决方案。首先,我得回忆一下题目要求。题目应该是关于处理乒乓球比赛的比分记录,统计每一局的比分,并在特定条件下结束一局,比如当一方得分达到11分且分差至少2分,或者比分超过11分但分差为2分。同时,输入数据可能有多行,直到遇到'E'结束。 接下来,我需要考虑如何解析输入数据。输入的字符可能包含换行,所以需要逐个字符读取,忽略换行符。然后,处理每个字符,如果是'W'或'L'就记录到当前对局的比分中,否则如果是'E'就结束输入,并输出所有对局的结果。 然后是数据结构的问题。可能需要两个数组或者结构体来存储每局的结果,比如一个数组存储华华(假设是选手A)的得分,另一个存储对手的得分。或者用两个变量临时记录当前局的比分,当满足结束条件时存入数组。这里可能使用动态数组或者预先分配足够大的数组,因为题目可能没有给出对局数的上限,但考虑到内存限制,使用固定大小的数组应该可行,比如1000局。 接下来是处理每一局的结束条件。需要判断当前比分是否满足结束条件,比如A或B得分≥11且分差≥2,或者当比分超过11分时,分差恰好为2。例如,11:9结束,但13:11也会结束。所以每次处理一个字符后,都要检查当前比分是否满足结束条件,如果满足,就将该局的结果保存,并重置当前比分。 然后,输出结果时需要遍历保存的所有对局,按顺序输出每局的比分,华华在前,对手在后,每个比分占一行。此外,当输入中有'E'时,无论当前比分如何,都需要结束当前对局,并将未完成的对局也输出。 现在考虑代码结构。主函数里可能需要读取字符,直到遇到'E'。然后处理每个字符,如果是'W'或'L',就增加对应的分数。每次处理完一个字符后,检查是否满足结束条件。如果满足,就将该局保存,重置当前比分。如果遇到'E',同样保存当前比分(如果有的话),然后结束循环。 需要注意的是,输入可能有多行,因此读取字符时要跳过换行符。在C语言中,可以使用getchar()循环读取,直到EOF或者'E'。同时,处理完所有输入后,需要输出所有保存的对局结果,包括最后未完成的对局(如果有的话)。 可能的错误点包括没有正确处理换行符,导致漏掉字符;或者在处理结束条件时逻辑错误,比如分差判断不正确。例如,当比分是10:10时,继续比赛直到一方领先两分,所以即使达到11:10,也不结束,必须继续到12:10或者11:13等情况。 测试案例方面,例如输入WWWWWWWWWWW(11个W),应该输出1局11:0。输入WLWE,可能在处理到E时,当前比分是1:1,所以输出该局。或者更复杂的例子,比如连续多个局的情况。 现在考虑代码的具体实现。首先定义两个数组,比如a和b,存储每局的比分。然后定义两个临时变量currentA和currentB。每次读取到W或L时,增加对应的分数,然后检查是否满足结束条件。例如: if ((currentA >= 11 || currentB >=11) && abs(currentA - currentB) >=2) { 保存到数组,重置currentA和currentB为0。 } 或者,当比分达到例如11:10,此时分差是1,不结束,继续。直到分差≥2。 当处理完所有字符后,如果currentA或currentB不为0,或者有未保存的比分,比如在E出现时,不管是否满足条件,都要保存该局。 代码的大致流程: 初始化currentA和currentB为0。 初始化结果数组,比如用两个数组a和b,或者结构体数组。 循环读取字符: if 字符是'E',则保存当前比分(如果有的话),退出循环。 else if 字符是'W',currentA++ else if 字符是'L',currentB++ else(比如换行符、空格等)则忽略 然后检查是否满足结束条件: 如果满足,保存到数组,重置currentA和currentB。 保存后,输出所有结果。 注意,每处理一个字符后都要检查是否满足结束条件,否则可能漏掉某个字符导致对局没有正确结束。 例如,输入是WWWWWWWWWWWE,即11个W后跟E,此时应该保存11:0。但是如果输入是WWWWWWWWWWW(11个W)后面没有E,那么应该自动结束该局。 但是根据题目要求,输入可能以E结束,所以需要处理到E为止,并且输出所有已结束的对局,以及最后未结束的对局(如果有的话)。 例如,输入是WWL,然后E,此时currentA=2,currentB=1,这时即使不满足结束条件,也要输出该局,因为遇到E了。所以当处理到E时,不管当前比分是否满足条件,都要保存。 所以,代码逻辑应该是: 当读取到E时,如果currentA或currentB有值(即至少有一方得分),则保存该局,即使未完成。 因此,在代码中,处理E的时候,需要检查currentA + currentB >0,如果有,则保存。 这样,在输入结束或遇到E时,保存当前对局。 现在编写代码的大纲: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #define MAX_ROUNDS 1000 int main() { int a[MAX_ROUNDS], b[MAX_ROUNDS]; int count = 0; int currentA = 0, currentB = 0; char ch; while ((ch = getchar()) != EOF) { if (ch == 'E') { if (currentA != 0 || currentB != 0) { a[count] = currentA; b[count] = currentB; count++; } break; } else if (ch == 'W') { currentA++; } else if (ch == 'L') { currentB++; } else if (ch == '\n' || ch == ' ') { continue; } // 检查是否满足结束条件 if ((currentA >= 11 || currentB >=11) && abs(currentA - currentB) >=2) { a[count] = currentA; b[count] = currentB; count++; currentA = 0; currentB = 0; } } // 输出所有结果 for (int i = 0; i < count; i++) { printf("%d:%d\n", a[i], b[i]); } return 0; } 不过,可能存在问题,比如当输入中没有E的情况下,循环会一直读取直到EOF。但根据题目要求,输入应该以E结束。所以代码应该正确处理这种情况。 另外,测试案例需要考虑多个情况: 例如: 输入: WWWWWWWWWWWL E 此时,在读取到最后一个L时,currentA=11, currentB=1,分差10≥2,所以该局被保存。然后遇到E时,currentA和currentB都是0,所以不保存。 另一个情况: 输入: WLWE 在读取到第三个W时,currentA=2,currentB=1。然后遇到E,保存该局,输出2:1。 或者,输入是连续的多个对局,比如多次满足结束条件。 此外,是否要处理11分制以外的其他情况?比如题目是否可能有不同的分制?但根据NOIP2003题目,应该是固定的11分制。 另一个问题,是否需要处理输入中的其他无效字符?比如除了W、L、E、换行符之外的其他字符,代码应该忽略它们,按照题目描述,输入可能只包含这些字符,所以可以跳过其他字符。 现在考虑是否存在逻辑错误。例如,当输入字符导致currentA和currentB在每次处理字符后都要检查是否满足条件。例如,当某个字符处理后,分数刚好满足结束条件,此时保存并重置。否则继续。 比如,输入是WWWWWWWWWWW(11个W),此时currentA=11,currentB=0,分差11≥2,所以保存该局。然后后续字符处理时会重置,继续读取其他字符,如果有的话。 另一个例子,输入是WWWWWWWWWW(10个W),然后L,此时currentA=10,currentB=1,不满足条件。接着再输入L,变成10:2,分差8≥2,但currentA和B都未达到11,所以不结束。继续输入W,变成11:2,此时满足条件,保存。 所以代码中的条件判断是正确的。 现在,用户提到参考的引用是时间限制和空间限制,这可能来自某个OJ系统的题目要求。因此,代码需要符合这些限制。例如,C语言的时间限制是1秒,空间限制是262144K,即256MB。代码中使用固定大小的数组是没问题的,因为1000局的空间非常小。 综上,这个代码应该可以解决问题。测试时需要处理不同的输入情况,确保所有情况都被覆盖。</think>### NOIP 2003普及组乒乓球问题C语言实现 #### 问题分析 题目要求处理乒乓球比赛比分记录,统计每局比分。规则如下: 1. 当一方得分$\geq 11$且分差$\geq 2$时结束一局 2. 输入以字符`E`结束 3. 需处理多行输入数据 #### 实现思路 1. **输入处理**:逐字符读取输入,忽略换行符 2. **比分统计**:使用临时变量记录当前局比分 3. **结束条件判断**:每次更新比分后检查是否满足结束条件 4. **结果保存**:满足条件或遇到`E`时保存当前局比分 #### 代码实现 ```c #include <stdio.h> #include <stdlib.h> #define MAX_ROUNDS 1000 int main() { int a[MAX_ROUNDS], b[MAX_ROUNDS]; int count = 0; int currentA = 0, currentB = 0; char ch; while ((ch = getchar()) != EOF && ch != 'E') { if (ch == 'W') currentA++; else if (ch == 'L') currentB++; else continue; // 忽略无效字符 // 检查结束条件 if ((currentA >= 11 || currentB >= 11) && abs(currentA - currentB) >= 2) { a[count] = currentA; b[count] = currentB; count++; currentA = currentB = 0; } } // 处理未完成的对局 if (currentA > 0 || currentB > 0) { a[count] = currentA; b[count] = currentB; count++; } // 输出结果 for (int i = 0; i < count; i++) { printf("%d:%d\n", a[i], b[i]); } return 0; } ``` #### 算法说明 1. **时间复杂度**:$O(n)$,线性扫描输入字符 2. **空间复杂度**:$O(1)$,使用固定大小数组存储结果 3. **核心逻辑**: - 使用`currentA`和`currentB`追踪当前局比分 - `abs(currentA - currentB) >= 2`确保分差条件 - 遇到`E`时强制结束当前局[^1]
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值