文章目录
生日问题
你和你的同学知道你老板A的生日是以下十个日期:
- 03-04,03-05,03-08
- 06-04,06-07
- 09-01,09-05
- 12-01,12-02,12-08
A告诉你他生日的月份,告诉你同事C他生日是几号。在那之后你说:我不知道A的生日,C也不知道它是什么。在听到你说的话,C回答:我之前不知道A生日,但是我现在知道了。你笑着说:现在我也知道了。在看着这个十个日期和听见你的评论,你的主管写下A的生日,所以主管写的是?
思考过程
- 令 D D D为A生日的天数,我们有 D ∈ { 1 , 2 , 4 , 5 , 7 , 8 } D \in \{1,2,4,5,7,8\} D∈{1,2,4,5,7,8},如果这个生日是唯一的天数,C马上知道A的生日,2和7是唯一的号。
- 考虑到你知道C不知道A生日,说明在你知晓的月份里,没有唯一的日期,可以这样想:
(1)如果你被告知的月份是3月,3月的选项里有4、5、8号,而这些都不是唯一的(如6月也有4号)
(2)如果你被告知的月份是6月,6月的选项里有4、7号,这里7号是唯一的,那么你就会说“C可能知道A的生日”,而不是肯定C也不知道
以此类推,你可以推断C知道的A生日不是2号和7号。所以生日月份不是6月和12月。(这一信息也是C根据你的话已经推出来的) - 因为C马上推断A的生日,所以A生日在3月和9月唯一,排除5号,只剩下1,4,8号。在所有的可能下4号和8号在同一个月份,如果你被告诉在三月,你也不知道A的生日,所以当你在C说他知道了之后,你之所也能判断出来A的生日,因为你被告知的是九月。
- 所以当主管得知你和C都能知道的日期,推出A的生日是09-01
卡牌游戏
一个赌场给出一个使用52张卡牌的游戏。规则是你们每次可以翻转两张卡牌。对于发的两张牌,如果都是黑色,它们就属于发牌者的牌堆;如果它们都是红色的,它们就属于你的牌堆;如果一黑一红就是不要了。这个过程将会一直重复,直到52张牌发完。如果你有更多牌在你的牌堆,你就赢100刀,否则你什么都得不到。发牌者允许你商量这个你愿意为这个游戏付出的价格,你将会为这个付多少钱?
答案
无论这个牌如何发,你和这个发牌员的得到的牌是一样的,因为抛弃的牌都是一红一黑,也就是抛弃的红色牌和黑色一样多,没被抛弃的牌红和黑色也是一样多。所以按照规则来你将什么都拿不到,你将为这个游戏付0元
燃烧的绳子(这道题曾经在九坤面试中遇到过)
你有两条绳子,每条都需要烧一个小时才能烧完。但是每条绳子在每个点都有不同的密度,所以不能保证它在不同的部分燃烧时间,所以你怎么使用这两条绳子衡量45分钟。
答案
对于其中一根绳子我们首先同时点燃两端,和点燃另外一条的一端,当点燃两端的绳子烧完,也就是过了半小时,我们点燃另外一条绳子的另外一端,这样再过15分钟全部烧完。
零的个数
100!有多少个零
答案
看有多少个5,
5
=
5
×
1
,
1
个
10
=
5
×
2
,
1
个
⋯
25
=
5
×
5
,
2
个
⋯
\begin{aligned} 5=5 \times 1,1个\\ 10=5 \times 2,1个\\ \cdots\\ 25=5 \times 5,2个\\ \cdots \end{aligned}
5=5×1,1个10=5×2,1个⋯25=5×5,2个⋯
5的倍数的个数有20个,其中25、50、75和100分别多出一个5,所以共有
20
+
4
=
24
20+4=24
20+4=24个零
赛马
有25只马,每个马的速度都和其它马不一样。因为赛场只有5个赛道,所以一次比赛最多五只马,你需要找出最快的三只马,需用最少的比赛场次是多少?
答案
- 分五组马跑,设每组第一名记为 1 , 6 , 11 , 16 , 21 1,6,11,16,21 1,6,11,16,21因为是前三所以每组马的后两名直接去掉,
- 然后每组第一名跑,不妨假设成绩是 1 , 6 , 11 , 16 , 21 1,6,11,16,21 1,6,11,16,21,就可以去掉后两名16、21,选出第一名1
- 进一步赛一次 2 , 3 , 6 , 7 , 11 2,3,6,7,11 2,3,6,7,11,选最快的两只,这样三只就出来了,所以最少7次
x x . . . x = 2 , x = ? x^{x^{.^{.^{.^{x}}}}}=2 , x=? xx...x=2,x=?
答案
等价于 x 2 = 2 x^{2}=2 x2=2,故 x = 2 x=\sqrt 2 x=2,参考
盒子问题
你能将53块1x1x4的砖头装进6x6x6盒子吗?
答案
不能,二分法,假设6X6X6分成2x2x2相邻的黑白立体盒子,同颜色不相邻,将会有27个,要么13黑14白,要么14黑13白。13黑13白可以放52块1X1X4,最后一块没地方放。
日历问题
有2个骰子,每一个骰子有是6面的正方体,每一面上只能放0到9的数字一个,问这2个骰子如何组合,可以达到显示日历的效果(从01-31)?
- 两个骰子,每个骰子 6 个数字,共 12 个数字。
- 必须要显示 01-09,11-19,21-29,数字 0、1、2 不可能只由一个骰子提供,所以两个骰子上都要有 0、1、2;
- 剩下每个骰子各有 3 个数字,要显示 3~9 共 7 个信息……似乎不可能……但是,注意到 “6” 倒过来就是 “9”,所以,只要把 3、4、5、6、7、8 分配到每个骰子上,每个骰子各 3 个即可,共有
C
6
3
2
=
10
\frac{C_{6}^{3} }{2}=10
2C63=10 组本质不同的解。
提供工作的门
天堂地狱两扇门,两个门卫,一个说真话,一个说假话,只能对一个人提问一次,如何找出天堂之门?
答案
这个问题看似无解,实际上你要这样想,一真一假,如果把他们进行与运算,则联合的回答总是假的
于是你可以这么问a"如果我问b那扇门(用手指着)是通往天堂的,他会说是,对吗?"
这一句话相当于把两个人的回答叠加了,也就相当于进行了与运算,那么得到的答案总是假的,所以按他回答的反方向来就对了
- 若a说是的,则选a
- 若a说不是,则选b
最后一个球
一个袋子里面有20个蓝色球和14个红色的球,每次你可以随机去拿两个球(每个球抽到概率相等)。你不能吧这些球放回,如果颜色相同,你可以另外放一个蓝色到袋子里面,如果颜色不同,你可以加一个红色到袋子,假设你有无止尽的红篮球供应,你可以重复抽,最后剩下的是什么颜色的球呢,如果是20个蓝球和13个红色球呢
答案
如果你理解这线索,答案就比较简单
- 两个都是蓝色(B,R)变成(B-1,R)
- 两个都是红色 (B,R)变成(B+1,R-2)
- 一蓝一红 (B,R)变成(B-1,R)
所以红色球每次减少2个或者不减少,所以如果开始红球是偶数,红色球不会变奇数,所以会变成剩下蓝球。如果13个红球剩下红球。
求最小集合
已知1-40 40个数 ,求一到40中选出最小的集合,使得这个集合的数加减可以得到1-40所有的数,每个数只能用一次比如 {1,2}可以得到1+2=3但是不能得到1+2+2=5
答案
首先得到1到9的最小组合{1,3,5}其次因为有十几,二十几,三十几,所以需要添加{10,20}也就是{1,3,5,10,20}