0-1背包和完全背包问题

0-1背包

0-1背包是一个组合优化问题,在这个问题中,给定一组物品,每个物品都有一个重量和一个价值,在不超过背包重量限制的前提下,选择一些物品放入背包,以使得背包中物品的总价值最大,0-1背包问题中每个物品只能选取一次。
所以它的定义如下:

  • n个物品,每个物品i有重量w[i]和价值v[i]
  • 一个背包能承受的最大重量为W
  • 每个物品只能选择放入背包或不放入背包(01选择)。
  • 目标是选择物品,使得背包中物品的总价值最大,且总重量不超过W

我们用动态规划来解决这个问题,其步骤为:

  1. 定义状态:定义dp[i][j]为在考虑前i个物品,且背包容量为j时所能获得的最大价值。
  2. 状态转移方程:
  • 如果不选择第i个物品,则dp[i][j] = dp[i-1][j]
  • 如果选择第i个物品(前提是j >= w[i]),则dp[i][j] = dp[i-1][j-w[i]] + v[i]
  1. 初始化:dp[0][j] = 0,没有物品时,任何容量下的价值都是0.
  2. 计算顺序:按照物品的顺序和背包容量的增加顺序,更新dp数组。
  3. 最终结果,dp[n][W]即为最终的最大价值,其中n是物品的总数,W是背包的最大容量。

代码如下:

#include <iostream>
#include <vector>
using namespace std;

// 函数用于解决01背包问题
int knapsack01(int W, int n, vector<int>& weights, vector<int>& values) {
    vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));

    // i索引是考虑到第几个物品了,j是背包的容量,用来便于动态规划,这里默认进行了初始化,因为物品是1~n,索引0对应的值默认为0
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= W; j++) {
            if (weights[i - 1] <= j) {
                // 可以选择不放入第i个物品,或者放入第i个物品,这里j-weights[i-1]是当前容量减去第i个物品的重量剩下的容量,用来考虑装其他物品
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]);
            } else {
                // 如果物品重量大于背包容量,则不能放入背包
                dp[i][j] = dp[i - 1][j];
            }
        }
    }

    return dp[n][W];
}

int main() {
    int W = 7; // 背包最大重量
    int n = 4; // 物品数量
    vector<int> weights = {2, 3, 4, 5}; // 物品重量
    vector<int> values = {3, 4, 5, 7}; // 物品价值

    cout << "The maximum value of items that can be carried in the knapsack is: "
         << knapsack01(W, n, weights, values) << endl;

    return 0;
}

完全背包

完全背包与01背包问题的主要区别在于,完全背包问题中的每种物品可以无限制地选取多次,而01背包问题中每种物品只能选取一次。
所以它的定义如下:

  • n种物品,每种物品i有一个重量w[i]和一个价值v[i]
  • 一个背包可以承受的最大重量为W
  • 每种物品可以选取任意多次(与01背包问题不同)。
  • 目标是选择物品的组合,使得总价值最大,同时不超过背包的最大承载重量。

我们用动态规划来解决这个问题,步骤为:

  1. 定义状态:定义dp[j]为在不超过重量j的条件下,能够获得的最大价值。
  2. 状态转移方程:对于每个物品i,状态转移方程可以表示为:dp[j] = max(dp[j], dp[j - w[i]] + v[i])
  3. 初始化:dp[0]初始化为0。
  4. 计算顺序:按照背包容量的增加顺序,更新dp数组。
  5. 最终结果:dp[W]即为不超过背包最大容量W时地最大价值。

代码如下:

#include <iostream>
#include <vector>
using namespace std;

// 函数用于解决完全背包问题
int completeKnapsack(int W, const vector<int>& weights, const vector<int>& values, int n) {
    vector<int> dp(W + 1, 0);

    for (int i = 1; i <= n; ++i) {
        for (int j = 0; j <= W; ++j) {
            if (j >= weights[i - 1]) {
                dp[j] = max(dp[j], dp[j - weights[i - 1]] + values[i - 1]);
            }
        }
    }

    return dp[W];
}

int main() {
    int W = 10; // 背包最大重量
    int n = 4; // 物品数量
    vector<int> weights = {2, 3, 4, 5}; // 物品重量
    vector<int> values = {3, 4, 5, 6}; // 物品价值

    cout << "The maximum value of items that can be carried in the knapsack is: "
         << completeKnapsack(W, weights, values, n) << endl;

    return 0;
}

这里我们的外层循环虽然仍是按物品顺序来的,但是动态规划中每个物品是独立的,即选择放入或者不放入第i种物品不会影响其他物品的选择,对于每种物品(i循环),我们检查当前背包容量(j循环)是否足以容纳至少一个该物品。如果是,更新动态规划表dp[j]

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值