大数据分析案例-基于RFM模型对电商客户价值分析(聚类)

本文通过分析一家全球超市的零售数据,运用RFM模型进行客户价值分析。研究了每年销售额增长率、地区销售额、销售淡旺季,并通过数据预处理、聚类分群,揭示了客户行为模式。实验结果显示,该超市销售额稳步上升,客户价值可细分为8类,为企业制定客户策略提供依据。

目录

1.项目背景

2.项目简介

2.1分析目标

2.2数据说明

2.3技术工具 

3.实验步骤

3.1理解数据

3.2数据预处理

3.2.1缺失值处理

3.2.2重复值处理 

3.2.3异常值处理

3.2.4数据类型转换 

 3.3数据可视化

3.3.1每年销售额的增长率

3.3.2各个地区分店的销售额

3.3.3销售淡旺季分析 

3.4构建RFM模型

3.5聚类分群 

4.总结与建议

5.实验心得


1.项目背景

        随着电商的不断发展,网上购物变得越来越流行。更多电商平台崛起,对于电商卖家来说增加的不只是人们越来越高的需求,还要面对更多强大的竞争对手。面对这些挑战,就需要能够及时发现店铺经营中的问题,并且能够有效解决这些实际的问题,从而提升自身的竞争力。

        根据已有数据对店铺整体运营情况进行分析,了解运营状况,对未来进行预测,已经成为电商运营必不可少的技能。

2.项目简介

2.1分析目标

对一家全球超市4年(2011~2014年)的零售数据进行数据分析,分析目标如下:

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值