混淆矩阵——矩阵可视化

相关文章

import numpy as np
import seaborn as sns
import tensorflow as tf
from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix

正例 and 负例

在二分类中

正例是指在分类问题中,被标记为目标类别的样本。在二分类问题中,正例(Positive)代表我们感兴趣的目标,而另一个类别定义为反例(Negative)

举个栗子🌰,我们要区分苹果🍎和凤梨🍐。我们想要的是苹果,在这种情况下,我们将苹果定义为正例,凤梨则为反例

当我们使用构建的模型对苹果和梨分类时

  • 被分类的是🍎(正例),如果模型分类了,那就是真正例(TP)
  • 被分类的是🍎(正例),如果模型分类了,那就是假正例(FP)
  • 被分类的是🍐(反例),如果模型分类了,那就是真反例(TN)
  • 被分类的是🍐(反例),如果模型分类了,那就是假正例(FN)

T/F表示是否被分类正确,P/N表示是正例 or 反例

在多分类中

还是大差不差,但在多分类中要看我们进行分类的对象了(👏👏此对象非彼对象!!!)

举个栗子🌰,我们要区分苹果🍎、凤梨🍐和橘子🍊

  • 当对象为苹果🍎,也就是说我们想要的是苹果时,在这种情况下,苹果为正例,其他的(凤梨、橘子)则为反例
    • 被分类的是🍎(正例),如果模型分类正确,那就是真正例(TP)
    • 被分类的是🍎(正例),如果模型分类错误,那就是假正例(FP)
    • 被分类的是🍐|🍊(反例),如果模型分类正确,那就是真反例(TN)
    • 被分类的是🍐|🍊(反例),如果模型分类错误,那就是假正例(FN)
  • 当对象为凤梨🍐,也就是说我们想要的是凤梨时,在这种情况下,凤梨为正例,其他的(苹果、橘子)则为反例
    • 被分类的是🍐(正例),如果模型分类正确,那就是真正例(TP)
    • 被分类的是🍐(正例),如果模型分类错误,那就是假正例(FP)
    • 被分类的是🍎|🍊(反例),如果模型分类正确,那就是真反例(TN)
    • 被分类的是🍎|🍊(反例),如果模型分类错误,那就是假正例(FN)
  • 当对象为橘子🍊,也就是说我们想要的是橘子时,在这种情况下,橘子为正例,其他的(苹果、凤梨)则为反例
    • 被分类的是🍊(正例),如果模型分类正确,那就是真正例(TP)
    • 被分类的是🍊(正例),如果模型分类错误,那就是假正例(FP)
    • 被分类的是🍎|🍐(反例),如果模型分类正确,那就是真反例(TN)
    • 被分类的是🍎|🍐(反例),如果模型分类错误,那就是假正例(FN)

总而言之,言而总之,在对分类中要计算 TP、FP、TN、FN 要将每一个类别作为对象依次计算。倘若可以得到混淆矩阵,就犹如有手握屠龙宝刀方便多了

那混淆矩阵是啥子嘛

通过将模型的预测结果与真实标签进行比较,可以得出混淆矩阵(Confusion Matrix)。以帮助我们了解模型在不同类别上的分类情况,根据混淆矩阵我们可以计算出真正例(True Positive, TP)、真反例(True Negative, TN)、假正例(False Positive, FP)和假反例(False Negative, FN)。进而计算出准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1值(F1 Score)

cm = [[50, 0, 1, 3],
      [0, 60, 0, 1],
      [2, 4, 29, 0],
      [4, 4, 1, 57]]
classes = ['cat', 'dog', 'pig', 'bird']
sns.heatmap(data=cm, annot=True,
            xticklabels=classes,
            yticklabels=classes,
            cmap='GnBu')
plt.xlabel('Pred')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()

74c79e05-8b2f-45a8-bd3d-a86ea798d159.png

诸君且看,这张便是混淆矩阵的可视化图。X轴是模型的预测结果,Y轴是正确标签。每一个单元标注了预测正确的数量,笔者的看图方式是,从左到右一列一列竖着看。

cat 的[50, 0, 2, 4]列,即此时的对象为 cat ,正例为 cat

  • 与Y轴的正确标签相比,预测结果与正确标签对应上的是是50个,故TP=50
  • 此时正例为 cat,而剩下的[0, 2, 4]为预测错误的,故FP=0+2+4=6
  • cat 列[50, 0, 2, 4]已经看完了,剩下的都是反例了。反例中,预测对的就是那几个颜色深的[60, 29, 57](当然,cat 列里的50不算,因为这是正例) ,故TN=60+29+57=146
  • 至此,TP、FP、TN都已计算出,而FN就是矩阵内数值总和减去TP、FP、TN这三。故FN=216-50-6-146=14

对于 cat 而言,TP=50、FP=6、TN=146、FN=14
混淆矩阵.png

混淆矩阵计算

sklearn.metrics.confusion_matrix 计算

cm = confusion_matrix(y_true=true, y_pred=pred)
print(cm)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值