相关文章
import numpy as np
import seaborn as sns
import tensorflow as tf
from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix
正例 and 负例
在二分类中
正例是指在分类问题中,被标记为目标类别的样本。在二分类问题中,正例(Positive)代表我们感兴趣的目标,而另一个类别定义为反例(Negative)
举个栗子🌰,我们要区分苹果🍎和凤梨🍐。我们想要的是苹果,在这种情况下,我们将苹果定义为正例,凤梨则为反例
当我们使用构建的模型对苹果和梨分类时
- 被分类的是🍎(正例),如果模型分类对了,那就是真正例(TP)
- 被分类的是🍎(正例),如果模型分类错了,那就是假正例(FP)
- 被分类的是🍐(反例),如果模型分类对了,那就是真反例(TN)
- 被分类的是🍐(反例),如果模型分类错了,那就是假正例(FN)
T/F表示是否被分类正确,P/N表示是正例 or 反例
在多分类中
还是大差不差,但在多分类中要看我们进行分类的对象了(👏👏此对象非彼对象!!!)
举个栗子🌰,我们要区分苹果🍎、凤梨🍐和橘子🍊
- 当对象为苹果🍎,也就是说我们想要的是苹果时,在这种情况下,苹果为正例,其他的(凤梨、橘子)则为反例
- 被分类的是🍎(正例),如果模型分类正确,那就是真正例(TP)
- 被分类的是🍎(正例),如果模型分类错误,那就是假正例(FP)
- 被分类的是🍐|🍊(反例),如果模型分类正确,那就是真反例(TN)
- 被分类的是🍐|🍊(反例),如果模型分类错误,那就是假正例(FN)
- 当对象为凤梨🍐,也就是说我们想要的是凤梨时,在这种情况下,凤梨为正例,其他的(苹果、橘子)则为反例
- 被分类的是🍐(正例),如果模型分类正确,那就是真正例(TP)
- 被分类的是🍐(正例),如果模型分类错误,那就是假正例(FP)
- 被分类的是🍎|🍊(反例),如果模型分类正确,那就是真反例(TN)
- 被分类的是🍎|🍊(反例),如果模型分类错误,那就是假正例(FN)
- 当对象为橘子🍊,也就是说我们想要的是橘子时,在这种情况下,橘子为正例,其他的(苹果、凤梨)则为反例
- 被分类的是🍊(正例),如果模型分类正确,那就是真正例(TP)
- 被分类的是🍊(正例),如果模型分类错误,那就是假正例(FP)
- 被分类的是🍎|🍐(反例),如果模型分类正确,那就是真反例(TN)
- 被分类的是🍎|🍐(反例),如果模型分类错误,那就是假正例(FN)
总而言之,言而总之,在对分类中要计算 TP、FP、TN、FN 要将每一个类别作为对象依次计算。倘若可以得到混淆矩阵,就犹如有手握屠龙宝刀方便多了
那混淆矩阵是啥子嘛
通过将模型的预测结果与真实标签进行比较,可以得出混淆矩阵(Confusion Matrix)。以帮助我们了解模型在不同类别上的分类情况,根据混淆矩阵我们可以计算出真正例(True Positive, TP)、真反例(True Negative, TN)、假正例(False Positive, FP)和假反例(False Negative, FN)。进而计算出准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1值(F1 Score)
cm = [[50, 0, 1, 3],
[0, 60, 0, 1],
[2, 4, 29, 0],
[4, 4, 1, 57]]
classes = ['cat', 'dog', 'pig', 'bird']
sns.heatmap(data=cm, annot=True,
xticklabels=classes,
yticklabels=classes,
cmap='GnBu')
plt.xlabel('Pred')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()
诸君且看,这张便是混淆矩阵的可视化图。X轴是模型的预测结果,Y轴是正确标签。每一个单元标注了预测正确的数量,笔者的看图方式是,从左到右一列一列竖着看。
cat 的[50, 0, 2, 4]
列,即此时的对象为 cat ,正例为 cat
- 与Y轴的正确标签相比,预测结果与正确标签对应上的是是
50
个,故TP=50
- 此时正例为 cat,而剩下的
[0, 2, 4]
为预测错误的,故FP=0+2+4=6
- cat 列
[50, 0, 2, 4]
已经看完了,剩下的都是反例了。反例中,预测对的就是那几个颜色深的[60, 29, 57]
(当然,cat 列里的50
不算,因为这是正例) ,故TN=60+29+57=146
- 至此,TP、FP、TN都已计算出,而FN就是矩阵内数值总和减去TP、FP、TN这三。故
FN=216-50-6-146=14
对于 cat 而言,TP=50、FP=6、TN=146、FN=14
混淆矩阵计算
sklearn.metrics.confusion_matrix 计算
cm = confusion_matrix(y_true=true, y_pred=pred)
print(cm)