可测函数

1  定义

可测函数:设f(x)是定义在可测集E \subset R^{n}上的实函数,称f(x)E上的可测函数,如果满足:

                                               \forall a\in R, |a| < +\infty,\exists b_{a} \in R^{*}\cup\left \{ 0\right \}(m(E[f>a])=b_{a})

【定理解释:对任意一个有限数,E[f>a]可测。

称除了\pm \infty的实数为有限数。

E[f>a] = \left \{ x|f(x)>a,x \in E \right \}

 

x_{0}处连续:f(x)是定义在可测集E \subset R^{n}上的实函数,y_{0}=f(x_{0}),称f(x)x_{0}处连续,如果满足:

                                                                     \forall \delta_{1}>0 \exists\delta_{2}>0(f(U(x_{0},\delta_{2})\cap E)\subset V(y_{0},\delta_{1})).

【即就是,y_{0}的任一邻域V,都存在一个x_{0}的邻域U,使得U中属于E的点的函数值落于V中。

这样,孤立点也就连续了。

几乎处处有限的可测函数“基本上连续”】

 

2  可测函数常见的有哪些

定理:连续函数是可测函数。

【从“”连续”和“可测”定义出发证明】

 

定理:简单函数是可测函数。

【推理:

有定理:(1)可测集上的可测函数,在其可测子集上也可测;

                (2)分别在有限个可测集上可测的函数,也在这些可测集的并集上可测。

有定义:定义域可以划分为有限个不相交集,同时其在这些集合上都只取一个常数c_{i},这样的函数称为简单函数。

由可测的定义,简单函数显然可测。\phi(x)=\sum_{i=1}^{n}c_{i}X_{E_{i}}(x)X_{E_{i}}(x)E_{i}上的特征函数,X_{E_{i}}(x)=\left\{\begin{matrix}1 (x\in E_{i}) \\ 0(x\notin E_{i}) \end{matrix}\right.

 

3  可测的运算性质

定理:(1)可测函数进行有限次“加”、“减”、“乘”、“除”以及“取绝对值”运算,如复合函数在原可测集有意义,则它仍在原可测集上可测。

             (2)若\left \{ f_{n}(x) \right \}是一列(或者有限个)可测集,则其上、下确界以及上、下极限(或极限,若极限存在)也都可测。

 

4  可测函数的逼近

定理:在E \subset R^{n}的可测函数f(x)可以用简单函数列\left \{ f_{n}(x) \right \},n=1,2,\cdot \cdot \cdot来逼近,即 \lim_{n\rightarrow +\infty}f_{n}(x) = f(x).。

          (误差分析),若f(x)有界,则为一致收敛。

【一致收敛意味着收敛的速度是一样,一致收敛条件下可以交换极限与某些运算之间的顺序。

误差分析还可以涉及几个概念,见下定义。】

 

几乎处处\pi:设\piE上的一个真命题,如果使得\pi为假的集满足:m(E-E[\pi is true])=0,记作 a.e. \pi

【鲁津定理:几乎处处有限的可测函数“基本上连续”。

叶果诺夫定理:几乎处处收敛于一个有限函数的可测函数,“基本一致收敛”于这个有限函数。】

 

依测度收敛:设\left \{ f_{n}(x) \right \},n=1,2,\cdot \cdot \cdotE \subset R^{n}上的一列a.e.有限的可测函数,若E上存在a.e.有限的可测函数f(x)满足:

                                                                                   \forall \delta>0(\lim_{n\rightarrow \infty}mE[|f_{n}-f|\geqslant \delta]=0)

则称f_{n}(x)依测度收敛于f(x),记作f_{n}(x)\Rightarrow f(x)

【几乎处处收敛与依测度收敛的关系:

里斯定理:在E上\left \{ f_{n}(x) \right \},n=1,2,\cdot \cdot \cdot依测度收敛于f(x),则存在子列\left \{ f_{n_{k}}(x) \right \},n_{k}=1,2,\cdot \cdot \cdot    a.e. 收敛于f(x)

Lebesgue定理:设(1)mE<\infty

                                 (2)\left \{ f_{n}(x) \right \},n=1,2,\cdot \cdot \cdotE上的一列a.e.有限的可测函数;

                                 (3)\left \{ f_{n}(x) \right \},n=1,2,\cdot \cdot \cdot  a.e. 收敛于a.e.有限的函数f(x)

                               那么f_{n}(x)\Rightarrow f(x)

 

 

 

 

 

 

 

  • 7
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东风吹柳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值