【实分析】可测函数

可测函数的定义与例子

定义. 设 E E E R n \mathbb{R}^{n} Rn 中的可测集, f f f 是定义在 E E E 上的实值函数, 若对 ∀ a ∈ R \forall a\in \mathbb{R} aR
{ x ∈ E : f ( x ) > a } \{x\in E: f(x)>a\} {xE:f(x)>a}
是可测集, 则称 f f f E E E 上的 Lebesgue 可测函数, 或称 f f f E E E 上可测.

注. 以下若无特别说明, E E E 均指 R n \mathbb{R}^{n} Rn 中的可测集.

定理1. 设 f f f 是定义在 E E E 上的函数, 则以下 (1)~(5) 是等价的:

(1) f f f E E E 上的可测函数;

(2) ∀ a ∈ R \forall a\in \mathbb{R} aR, E ( f ≥ a ) E(f\geq a) E(fa) 是可测集;

(3) ∀ a ∈ R \forall a \in \mathbb{R} aR, E ( f < a ) E(f<a) E(f<a) 是可测集;

(4) ∀ a ∈ R \forall a\in \mathbb{R} aR, E ( f ≤ a ) E(f\leq a) E(fa) 是可测集;

(5) ∀ A ∈ B ( R 1 ) \forall A\in \mathscr{B}(\mathbb{R}^{1}) AB(R1), f − 1 ( A ) f^{-1}(A) f1(A) 是可测集, 并且 E ( f = + ∞ ) E(f = +\infty) E(f=+) 是可测集.

可测函数的运算封闭性

1.设 f f f g g g E E E 上可测, 则函数 c f ( c ) cf(c) cf(c) ( c c c 是实数), f + g f+g f+g , f g fg fg ∣ f ∣ |f| f 都在 E E E 上可测.

定义. f f f 是定义在 E E E 上的函数, 定义 f + ( x ) = max ⁡ { f ( x ) , 0 } f^{+}(x)= \max\{f(x),0\} f+(x)=max{f(x),0}, f − ( x ) = max ⁡ { − f ( x ) , 0 } f^{-}(x)=\max\{-f(x),0\} f(x)=max{f(x),0}, 或写成
f + ( x ) = { f ( x ) , f ( x ) ≥ 0 0 , f ( x ) < 0 f^{+}(x)=\begin{cases} &f(x), \quad f(x)\geq 0\\ &0, \quad f(x)<0 \end{cases} f+(x)={f(x),f(x)00,f(x)<0

f − ( x ) = { 0 , f ( x ) ≥ 0 − f ( x ) , f ( x ) < 0 f^{-}(x)=\begin{cases} &0, \quad f(x)\geq 0\\ &-f(x), \quad f(x)<0 \end{cases} f(x)={0,f(x)0f(x),f(x)<0

分别称 f + f^{+} f+ f − f^{-} f f f f 的正部和负部. f + f^{+} f+ f − f^{-} f 都是非负值函数, 并且对任意 x ∈ E x\in E xE
f ( x ) = f + ( x ) − f − ( x ) f(x)=f^{+}(x)-f^{-}(x) f(x)=f+(x)f(x)

∣ f ( x ) ∣ = f + ( x ) + f − ( x ) |f(x)|=f^{+}(x)+f^{-}(x) f(x)=f+(x)+f(x)

2.若 f f f E E E 上可测, 则 f + f^{+} f+ f − f^{-} f 都在 E E E 上可测.

3.设 { f n } \{f_{n}\} {fn} E E E 上的可测函数列, 则函数 sup ⁡ n ≥ 1 f n \sup\limits_{n\geq 1} f_{n} n1supfn, inf ⁡ n ≥ 1 f n \inf\limits_{n\geq 1} f_{n} n1inffn, lim ⁡ n ≥ 1 ‾ f n \overline{\lim\limits_{n\geq 1}}f_{n} n1limfn, lim ⁡ ‾ n ≥ 1 f n \mathop{\underline{\lim}}\limits_{{n\geq 1}}f_{n} n1limfn 可测.

可测函数的简单函数逼近

简单函数

f f f 是定义在 R n \mathbb{R}^{n} Rn 中的可测集 E E E上的函数. 若存在 E E E 的一个不可测分割 { A 1 , A 2 , . . . , A k } \{A_{1},A_{2},...,A_{k}\} {A1,A2,...,Ak} 和实数 a 1 , a 2 , … , a k a_{1}, a_{2},\dots, a_{k} a1,a2,,ak, 使得当 x ∈ A i x\in A_{i} xAi 时, f ( x ) = a i f(x)=a_{i} f(x)=ai, 则称 f f f E E E上的简单函数. 换言之, f f f为简单函数当且仅当 f f f 可以表示为
f ( x ) = ∑ i = 1 k α 1 χ A i ( x ) f(x)=\sum\limits_{i=1}^{k} \alpha_{1}\chi_{A_{i}}(x) f(x)=i=1kα1χAi(x)
由于可测集的特征函数是可测函数, 因此简单函数是可测函数.

简单函数的性质

1.设 f f f g g g 都是简单函数, 则: (1) c f cf cf ( c c c 是实数), f + g f+g f+g 是简单函数. (2) 设 ϕ ( x ) \phi(x) ϕ(x) R 1 \mathbb{R}^{1} R1 上的实值函数, 则 ϕ ( f ( x ) ) \phi(f(x)) ϕ(f(x)) 是简单函数.

定义. 设 { f n } \{f_{n}\} {fn} 是一列定义在 E E E 上的函数. 若对每个 x ∈ E x\in E xE, 总有
f 1 ( x ) ≤ f 2 ( x ) ≤ ⋯ ≤ f n ( x ) ≤ f n + 1 f_{1}(x) \leq f_{2}(x)\leq \dots \leq f_{n}(x) \leq f_{n+1} f1(x)f2(x)fn(x)fn+1
则称函数列 { f n } \{f_{n}\} {fn} 是单调增加的, 记为 f n ↑ f_{n}\uparrow fn. 若 { f n } \{f_{n}\} {fn} 是单调增加的函数列, 并且 lim ⁡ n → ∞ f n ( x ) = f ( x ) \lim\limits_{n\rightarrow \infty}f_{n}(x)=f(x) nlimfn(x)=f(x), ( x ∈ E x\in E xE), 则记为 f n ↑ f f_{n}\uparrow f fnf, ( n → ∞ n\rightarrow \infty n).

2.设 f f f E E E 上的非负可测函数, 则存在 E E E 上的非负简单函数列 { f n } \{f_{n}\} {fn} , 使得 { f n } \{f_{n}\} {fn} 是单调增加的, 并且
lim ⁡ n → ∞ f n ( x ) = f ( x ) ( x ∈ E ) \lim\limits_{n\rightarrow \infty} f_{n}(x) = f(x) \quad (x\in E) nlimfn(x)=f(x)(xE)
f f f E E E 上还是有界的, 则 { f n } \{f_{n}\} {fn} 收敛于 f f f 是一致的.

推论: (1) 设 f f f E E E 上的可测函数, 则存在 E E E 上的简单函数列 { f n } \{f_{n}\} {fn} , 使得
lim ⁡ n → ∞ f n ( x ) = f ( x ) ( x ∈ E ) \lim\limits_{n\rightarrow \infty} f_{n}(x) = f(x) \quad (x\in E) nlimfn(x)=f(x)(xE)
并且 ∣ f n ∣ ≤ ∣ f ∣ |f_{n}|\leq |f| fnf. 若 f f f E E E 上还是有界的, 则上述收敛是一致的.

(2) 设 f f f 是定义在 E E E 上的函数, 则 f f f 可测的充要条件是存在简单函数列 { f n } \{f_{n}\} {fn}.

可测函数的收敛性

几乎处处收敛, 依测度收敛, 几乎一致收敛

定义. 设 { f n } \{f_{n}\} {fn} E E E 上的可测函数列, f f f E E E 上的可测函数.

(1) 若存在 E E E 的一个零测度集 E 0 E_{0} E0, 使得当 x ∈ E − E 0 x\in E-E_{0} xEE0 f n ( x ) → f ( x ) f_{n}(x)\rightarrow f(x) fn(x)f(x), 则称 { f n } \{f_{n}\} {fn} E E E 上几乎处处收敛于 f f f, 记为 f n → f f_{n}\rightarrow f fnf a.e. 于 E E E.

(2) 若对于 ∀ ϵ > 0 \forall \epsilon > 0 ϵ>0, 满足
lim ⁡ n → ∞ m { x ∈ E : ∣ f n ( x ) − f ( x ) ∣ ≥ ϵ } = 0 \lim\limits_{n\rightarrow \infty} m\{x\in E: |f_{n}(x)-f(x)|\geq \epsilon\} = 0 nlimm{xE:fn(x)f(x)ϵ}=0
则称 { f n } \{f_{n}\} {fn} E E E 上依测度收敛于 f f f, 记为在 E E E f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fnmf.

(3) 若对于 ∀ δ > 0 \forall \delta > 0 δ>0, 存在 E E E 的可测子集 E δ E_{\delta} Eδ, m ( E δ ) < δ m(E_{\delta})<\delta m(Eδ)<δ, 使得在 E − E δ E-E_{\delta} EEδ 上一致收敛于 f f f, 则称记为 f n → f f_{n}\rightarrow f fnf a.un. (a.un. 是 almost uniformly 的缩写).

几种收敛的关系

引理1. 若 m ( E ) < ∞ m(E)< \infty m(E)<, f n → f f_{n}\rightarrow f fnf a.e. 于 E E E, 则对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0, 满足
lim ⁡ n → ∞ m ( ⋃ k = n ∞ E ( ∣ f k − f ∣ > ϵ ) ) = 0 \lim\limits_{n\rightarrow \infty} m(\bigcup_{k=n}^{\infty} E(|f_{k}-f|>\epsilon))=0 nlimm(k=nE(fkf>ϵ))=0
定理1. (Ergoroff) 当 m ( E ) < ∞ m(E)<\infty m(E)< 时, 若 f n → f f_{n}\rightarrow f fnf a.e. 于 E E E, 则 f n → f f_{n}\rightarrow f fnf a.un.

定理2. 当 m ( E ) < ∞ m(E)<\infty m(E)< 时, 若 f n → f f_{n}\rightarrow f fnf a.e. 于 E E E, 则 f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fnmf.

m ( E ) < ∞ m(E)<\infty m(E)< 不成立时, f n → f f_{n}\rightarrow f fnf a.e. 于 E E E 并不能推出 f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fnmf.

定理3. (F. Riesz) 若 f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fnmf, 则存在 { f n } \{f_{n}\} {fn} 的子列 { f n k } \{f_{n_{k}}\} {fnk}, 使得 f n k → f f_{n_{k}}\rightarrow f fnkf a.e. 于 E E E.

定理4. 当 m ( E ) < ∞ m(E)<\infty m(E)< 时, f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fnmf 的充要条件是对 { f n } \{f_{n}\} {fn} 的任一子列 { f n k } \{f_{n_{k}}\} {fnk}, 都存在其子列 { f n k ′ } \{f_{n_{k'}}\} {fnk} 使得 f n k ′ → f f_{n_{k'}}\rightarrow f fnkf a.e. 于 E E E.

可测函数的连续性

1.设 F 1 , F 2 , … , F k F_{1}, F_{2}, \dots, F_{k} F1,F2,,Fk R n \mathbb{R}^{n} Rn 中的 k k k 个互不相交的闭集, F = ⋃ i = 1 ∞ F i F=\bigcup_{i=1}^{\infty} F_{i} F=i=1Fi, 则简单函数 f ( x ) = ∑ i = 1 k a i χ F i ( x ) f(x)=\sum\limits_{i=1}^{k}a_{i}\chi_{F_{i}}(x) f(x)=i=1kaiχFi(x) F F F 上的连续函数.

2.(Lusin) 设 E E E R n \mathbb{R}^{n} Rn 中的可测集, f f f E E E 上 a.e. 有界的可测函数, 则对 ∀ δ > 0 \forall \delta>0 δ>0, 存在 E E E 的闭子集 F δ F_{\delta} Fδ, 使得 m ( E δ ) < δ m(E_{\delta})<\delta m(Eδ)<δ, 并且 f f f E − F δ E-F_{\delta} EFδ 的连续函数.

引理1. 设 A , B ⊂ R n A, B\subset \mathbb{R}^{n} A,BRn 是 2 个闭集, 并且 A ⋂ B = ∅ A\bigcap B=\emptyset AB=. 又设 a a a b b b 是实数, 并且 a < b a<b a<b, 则存在 R n \mathbb{R}^{n} Rn 上的一个连续函数 f f f, 使得 f ∣ A = a f|_{A}=a fA=a, f B = b f_{B}=b fB=b, 并且 a ≤ f ( x ) ≤ b a\leq f(x)\leq b af(x)b ( x ∈ R n x\in \mathbb{R}^{n} xRn)

3.(Tietze) 设 F F F R n \mathbb{R}^{n} Rn 中的闭集, f f f 是定义在 F F F 上的连续函数. 则存在定义在 R n \mathbb{R}^{n} Rn 上的连续函数 g g g, 使得当 x ∈ F x\in F xF g ( x ) = f ( x ) g(x)=f(x) g(x)=f(x), 并且
sup ⁡ x ∈ R n ∣ g ( x ) ∣ = sup ⁡ x ∈ F ∣ f ( x ) ∣ \sup\limits_{x\in \mathbb{R}^{n}}|g(x)|=\sup_{x\in F}|f(x)| xRnsupg(x)=xFsupf(x)
4.(Lusin) 设 E E E R n \mathbb{R}^{n} Rn 中的可测集, f f f E E E 上 a.e. 有界的可测函数, 则对于 ∀ δ > 0 \forall \delta>0 δ>0, 存在 R n \mathbb{R}^{n} Rn 上的连续函数 g g g, 使得
m { x ∈ E : f ( x ) ≠ g ( x ) } < δ m\{x\in E: f(x)\neq g(x)\}<\delta m{xE:f(x)=g(x)}<δ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值