可测函数的定义与例子
定义. 设
E
E
E 是
R
n
\mathbb{R}^{n}
Rn 中的可测集,
f
f
f 是定义在
E
E
E 上的实值函数, 若对
∀
a
∈
R
\forall a\in \mathbb{R}
∀a∈R
{
x
∈
E
:
f
(
x
)
>
a
}
\{x\in E: f(x)>a\}
{x∈E:f(x)>a}
是可测集, 则称
f
f
f 是
E
E
E 上的 Lebesgue 可测函数, 或称
f
f
f 在
E
E
E 上可测.
注. 以下若无特别说明, E E E 均指 R n \mathbb{R}^{n} Rn 中的可测集.
定理1. 设 f f f 是定义在 E E E 上的函数, 则以下 (1)~(5) 是等价的:
(1) f f f 是 E E E 上的可测函数;
(2) ∀ a ∈ R \forall a\in \mathbb{R} ∀a∈R, E ( f ≥ a ) E(f\geq a) E(f≥a) 是可测集;
(3) ∀ a ∈ R \forall a \in \mathbb{R} ∀a∈R, E ( f < a ) E(f<a) E(f<a) 是可测集;
(4) ∀ a ∈ R \forall a\in \mathbb{R} ∀a∈R, E ( f ≤ a ) E(f\leq a) E(f≤a) 是可测集;
(5) ∀ A ∈ B ( R 1 ) \forall A\in \mathscr{B}(\mathbb{R}^{1}) ∀A∈B(R1), f − 1 ( A ) f^{-1}(A) f−1(A) 是可测集, 并且 E ( f = + ∞ ) E(f = +\infty) E(f=+∞) 是可测集.
可测函数的运算封闭性
1.设 f f f 和 g g g 在 E E E 上可测, 则函数 c f ( c ) cf(c) cf(c) ( c c c 是实数), f + g f+g f+g , f g fg fg和 ∣ f ∣ |f| ∣f∣ 都在 E E E 上可测.
定义.
f
f
f 是定义在
E
E
E 上的函数, 定义
f
+
(
x
)
=
max
{
f
(
x
)
,
0
}
f^{+}(x)= \max\{f(x),0\}
f+(x)=max{f(x),0},
f
−
(
x
)
=
max
{
−
f
(
x
)
,
0
}
f^{-}(x)=\max\{-f(x),0\}
f−(x)=max{−f(x),0}, 或写成
f
+
(
x
)
=
{
f
(
x
)
,
f
(
x
)
≥
0
0
,
f
(
x
)
<
0
f^{+}(x)=\begin{cases} &f(x), \quad f(x)\geq 0\\ &0, \quad f(x)<0 \end{cases}
f+(x)={f(x),f(x)≥00,f(x)<0
f − ( x ) = { 0 , f ( x ) ≥ 0 − f ( x ) , f ( x ) < 0 f^{-}(x)=\begin{cases} &0, \quad f(x)\geq 0\\ &-f(x), \quad f(x)<0 \end{cases} f−(x)={0,f(x)≥0−f(x),f(x)<0
分别称
f
+
f^{+}
f+ 和
f
−
f^{-}
f− 为
f
f
f 的正部和负部.
f
+
f^{+}
f+和
f
−
f^{-}
f− 都是非负值函数, 并且对任意
x
∈
E
x\in E
x∈E 有
f
(
x
)
=
f
+
(
x
)
−
f
−
(
x
)
f(x)=f^{+}(x)-f^{-}(x)
f(x)=f+(x)−f−(x)
∣ f ( x ) ∣ = f + ( x ) + f − ( x ) |f(x)|=f^{+}(x)+f^{-}(x) ∣f(x)∣=f+(x)+f−(x)
2.若 f f f 在 E E E 上可测, 则 f + f^{+} f+ 和 f − f^{-} f− 都在 E E E 上可测.
3.设 { f n } \{f_{n}\} {fn} 是 E E E 上的可测函数列, 则函数 sup n ≥ 1 f n \sup\limits_{n\geq 1} f_{n} n≥1supfn, inf n ≥ 1 f n \inf\limits_{n\geq 1} f_{n} n≥1inffn, lim n ≥ 1 ‾ f n \overline{\lim\limits_{n\geq 1}}f_{n} n≥1limfn, lim ‾ n ≥ 1 f n \mathop{\underline{\lim}}\limits_{{n\geq 1}}f_{n} n≥1limfn 可测.
可测函数的简单函数逼近
简单函数
设
f
f
f 是定义在
R
n
\mathbb{R}^{n}
Rn 中的可测集
E
E
E上的函数. 若存在
E
E
E 的一个不可测分割
{
A
1
,
A
2
,
.
.
.
,
A
k
}
\{A_{1},A_{2},...,A_{k}\}
{A1,A2,...,Ak} 和实数
a
1
,
a
2
,
…
,
a
k
a_{1}, a_{2},\dots, a_{k}
a1,a2,…,ak, 使得当
x
∈
A
i
x\in A_{i}
x∈Ai 时,
f
(
x
)
=
a
i
f(x)=a_{i}
f(x)=ai, 则称
f
f
f 为
E
E
E上的简单函数. 换言之,
f
f
f为简单函数当且仅当
f
f
f 可以表示为
f
(
x
)
=
∑
i
=
1
k
α
1
χ
A
i
(
x
)
f(x)=\sum\limits_{i=1}^{k} \alpha_{1}\chi_{A_{i}}(x)
f(x)=i=1∑kα1χAi(x)
由于可测集的特征函数是可测函数, 因此简单函数是可测函数.
简单函数的性质
1.设 f f f 和 g g g 都是简单函数, 则: (1) c f cf cf ( c c c 是实数), f + g f+g f+g 是简单函数. (2) 设 ϕ ( x ) \phi(x) ϕ(x) 是 R 1 \mathbb{R}^{1} R1 上的实值函数, 则 ϕ ( f ( x ) ) \phi(f(x)) ϕ(f(x)) 是简单函数.
定义. 设
{
f
n
}
\{f_{n}\}
{fn} 是一列定义在
E
E
E 上的函数. 若对每个
x
∈
E
x\in E
x∈E, 总有
f
1
(
x
)
≤
f
2
(
x
)
≤
⋯
≤
f
n
(
x
)
≤
f
n
+
1
f_{1}(x) \leq f_{2}(x)\leq \dots \leq f_{n}(x) \leq f_{n+1}
f1(x)≤f2(x)≤⋯≤fn(x)≤fn+1
则称函数列
{
f
n
}
\{f_{n}\}
{fn} 是单调增加的, 记为
f
n
↑
f_{n}\uparrow
fn↑. 若
{
f
n
}
\{f_{n}\}
{fn} 是单调增加的函数列, 并且
lim
n
→
∞
f
n
(
x
)
=
f
(
x
)
\lim\limits_{n\rightarrow \infty}f_{n}(x)=f(x)
n→∞limfn(x)=f(x), (
x
∈
E
x\in E
x∈E), 则记为
f
n
↑
f
f_{n}\uparrow f
fn↑f, (
n
→
∞
n\rightarrow \infty
n→∞).
2.设
f
f
f 是
E
E
E 上的非负可测函数, 则存在
E
E
E 上的非负简单函数列
{
f
n
}
\{f_{n}\}
{fn} , 使得
{
f
n
}
\{f_{n}\}
{fn} 是单调增加的, 并且
lim
n
→
∞
f
n
(
x
)
=
f
(
x
)
(
x
∈
E
)
\lim\limits_{n\rightarrow \infty} f_{n}(x) = f(x) \quad (x\in E)
n→∞limfn(x)=f(x)(x∈E)
若
f
f
f 在
E
E
E 上还是有界的, 则
{
f
n
}
\{f_{n}\}
{fn} 收敛于
f
f
f 是一致的.
推论: (1) 设
f
f
f 是
E
E
E 上的可测函数, 则存在
E
E
E 上的简单函数列
{
f
n
}
\{f_{n}\}
{fn} , 使得
lim
n
→
∞
f
n
(
x
)
=
f
(
x
)
(
x
∈
E
)
\lim\limits_{n\rightarrow \infty} f_{n}(x) = f(x) \quad (x\in E)
n→∞limfn(x)=f(x)(x∈E)
并且
∣
f
n
∣
≤
∣
f
∣
|f_{n}|\leq |f|
∣fn∣≤∣f∣. 若
f
f
f 在
E
E
E 上还是有界的, 则上述收敛是一致的.
(2) 设 f f f 是定义在 E E E 上的函数, 则 f f f 可测的充要条件是存在简单函数列 { f n } \{f_{n}\} {fn}.
可测函数的收敛性
几乎处处收敛, 依测度收敛, 几乎一致收敛
定义. 设 { f n } \{f_{n}\} {fn} 是 E E E 上的可测函数列, f f f 是 E E E 上的可测函数.
(1) 若存在 E E E 的一个零测度集 E 0 E_{0} E0, 使得当 x ∈ E − E 0 x\in E-E_{0} x∈E−E0 时 f n ( x ) → f ( x ) f_{n}(x)\rightarrow f(x) fn(x)→f(x), 则称 { f n } \{f_{n}\} {fn} 在 E E E 上几乎处处收敛于 f f f, 记为 f n → f f_{n}\rightarrow f fn→f a.e. 于 E E E.
(2) 若对于
∀
ϵ
>
0
\forall \epsilon > 0
∀ϵ>0, 满足
lim
n
→
∞
m
{
x
∈
E
:
∣
f
n
(
x
)
−
f
(
x
)
∣
≥
ϵ
}
=
0
\lim\limits_{n\rightarrow \infty} m\{x\in E: |f_{n}(x)-f(x)|\geq \epsilon\} = 0
n→∞limm{x∈E:∣fn(x)−f(x)∣≥ϵ}=0
则称
{
f
n
}
\{f_{n}\}
{fn} 在
E
E
E 上依测度收敛于
f
f
f, 记为在
E
E
E 上
f
n
⟶
m
f
f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f
fn⟶mf.
(3) 若对于 ∀ δ > 0 \forall \delta > 0 ∀δ>0, 存在 E E E 的可测子集 E δ E_{\delta} Eδ, m ( E δ ) < δ m(E_{\delta})<\delta m(Eδ)<δ, 使得在 E − E δ E-E_{\delta} E−Eδ 上一致收敛于 f f f, 则称记为 f n → f f_{n}\rightarrow f fn→f a.un. (a.un. 是 almost uniformly 的缩写).
几种收敛的关系
引理1. 若
m
(
E
)
<
∞
m(E)< \infty
m(E)<∞,
f
n
→
f
f_{n}\rightarrow f
fn→f a.e. 于
E
E
E, 则对于
∀
ϵ
>
0
\forall \epsilon>0
∀ϵ>0, 满足
lim
n
→
∞
m
(
⋃
k
=
n
∞
E
(
∣
f
k
−
f
∣
>
ϵ
)
)
=
0
\lim\limits_{n\rightarrow \infty} m(\bigcup_{k=n}^{\infty} E(|f_{k}-f|>\epsilon))=0
n→∞limm(k=n⋃∞E(∣fk−f∣>ϵ))=0
定理1. (Ergoroff) 当
m
(
E
)
<
∞
m(E)<\infty
m(E)<∞ 时, 若
f
n
→
f
f_{n}\rightarrow f
fn→f a.e. 于
E
E
E, 则
f
n
→
f
f_{n}\rightarrow f
fn→f a.un.
定理2. 当 m ( E ) < ∞ m(E)<\infty m(E)<∞ 时, 若 f n → f f_{n}\rightarrow f fn→f a.e. 于 E E E, 则 f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fn⟶mf.
当 m ( E ) < ∞ m(E)<\infty m(E)<∞ 不成立时, f n → f f_{n}\rightarrow f fn→f a.e. 于 E E E 并不能推出 f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fn⟶mf.
定理3. (F. Riesz) 若 f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fn⟶mf, 则存在 { f n } \{f_{n}\} {fn} 的子列 { f n k } \{f_{n_{k}}\} {fnk}, 使得 f n k → f f_{n_{k}}\rightarrow f fnk→f a.e. 于 E E E.
定理4. 当 m ( E ) < ∞ m(E)<\infty m(E)<∞ 时, f n ⟶ m f f_{n}\stackrel{\mathrm{m}}{\longrightarrow}f fn⟶mf 的充要条件是对 { f n } \{f_{n}\} {fn} 的任一子列 { f n k } \{f_{n_{k}}\} {fnk}, 都存在其子列 { f n k ′ } \{f_{n_{k'}}\} {fnk′} 使得 f n k ′ → f f_{n_{k'}}\rightarrow f fnk′→f a.e. 于 E E E.
可测函数的连续性
1.设 F 1 , F 2 , … , F k F_{1}, F_{2}, \dots, F_{k} F1,F2,…,Fk 是 R n \mathbb{R}^{n} Rn 中的 k k k 个互不相交的闭集, F = ⋃ i = 1 ∞ F i F=\bigcup_{i=1}^{\infty} F_{i} F=⋃i=1∞Fi, 则简单函数 f ( x ) = ∑ i = 1 k a i χ F i ( x ) f(x)=\sum\limits_{i=1}^{k}a_{i}\chi_{F_{i}}(x) f(x)=i=1∑kaiχFi(x) 在 F F F 上的连续函数.
2.(Lusin) 设 E E E 是 R n \mathbb{R}^{n} Rn 中的可测集, f f f 是 E E E 上 a.e. 有界的可测函数, 则对 ∀ δ > 0 \forall \delta>0 ∀δ>0, 存在 E E E 的闭子集 F δ F_{\delta} Fδ, 使得 m ( E δ ) < δ m(E_{\delta})<\delta m(Eδ)<δ, 并且 f f f 是 E − F δ E-F_{\delta} E−Fδ 的连续函数.
引理1. 设 A , B ⊂ R n A, B\subset \mathbb{R}^{n} A,B⊂Rn 是 2 个闭集, 并且 A ⋂ B = ∅ A\bigcap B=\emptyset A⋂B=∅. 又设 a a a 和 b b b 是实数, 并且 a < b a<b a<b, 则存在 R n \mathbb{R}^{n} Rn 上的一个连续函数 f f f, 使得 f ∣ A = a f|_{A}=a f∣A=a, f B = b f_{B}=b fB=b, 并且 a ≤ f ( x ) ≤ b a\leq f(x)\leq b a≤f(x)≤b ( x ∈ R n x\in \mathbb{R}^{n} x∈Rn)
3.(Tietze) 设
F
F
F 是
R
n
\mathbb{R}^{n}
Rn 中的闭集,
f
f
f 是定义在
F
F
F 上的连续函数. 则存在定义在
R
n
\mathbb{R}^{n}
Rn 上的连续函数
g
g
g, 使得当
x
∈
F
x\in F
x∈F 时
g
(
x
)
=
f
(
x
)
g(x)=f(x)
g(x)=f(x), 并且
sup
x
∈
R
n
∣
g
(
x
)
∣
=
sup
x
∈
F
∣
f
(
x
)
∣
\sup\limits_{x\in \mathbb{R}^{n}}|g(x)|=\sup_{x\in F}|f(x)|
x∈Rnsup∣g(x)∣=x∈Fsup∣f(x)∣
4.(Lusin) 设
E
E
E 是
R
n
\mathbb{R}^{n}
Rn 中的可测集,
f
f
f 是
E
E
E 上 a.e. 有界的可测函数, 则对于
∀
δ
>
0
\forall \delta>0
∀δ>0, 存在
R
n
\mathbb{R}^{n}
Rn 上的连续函数
g
g
g, 使得
m
{
x
∈
E
:
f
(
x
)
≠
g
(
x
)
}
<
δ
m\{x\in E: f(x)\neq g(x)\}<\delta
m{x∈E:f(x)=g(x)}<δ