1. 测度的补充
可测集是这样的点集,任意两个被它隔离的点集,其外测度都可加.
2.可测函数的概念
设 E ⊂ R n E\subset R^n E⊂Rn可测, f f f是定义于E上的广义实值函数.若对于任意实数 a a a,点集{ x ∣ x ∈ E , f ( x ) > a x|x\in E,f(x)>a x∣x∈E,f(x)>a}是 R n R^n Rn内的可测集,则 f f f称为E上的Lebesgue可测函数,简称 f f f是E上的可测函数或 f f f在E上可测.
3.可测函数的性质
1.设
f
f
f是可测集E上的广义实值函数,则下列命题等价:
(1)f在E上可测;
(2)对任意实数
a
a
a,点集
E
(
f
≥
a
)
E(f\geq a)
E(f≥a)可测;
(3)对任意实数
a
a
a,点集
E
(
f
<
a
)
E(f<a)
E(f<a)可测;
(4)对任意实数
a
a
a,点集
E
(
f
≤
a
)
E(f\leq a)
E(f≤a)可测;
4.简单函数
若函数 φ \varphi φ定义在 E ⊂ R n E\subset R^n E⊂Rn上,只取有限个不同的值 a 1 , a 2 , . . . . , a k a_1,a_2,....,a_k a1,a2,....,ak,并且对每一个 i i i,取值 a i a_i ai的点集 E i ( x ∣ x ∈ E ∣ φ ( x ) = a i ) E_i(x|x\in E|\varphi(x)=a_i) Ei(x∣x∈E∣φ(x)=ai)都是可测集,则称 φ \varphi φ为E上的简单函数(这是E一定可测).当 E i E_i Ei是矩体时,称 φ \varphi φ为阶梯函数.
5.可测函数的四则运算与极限性质
1.若 f , g f,g f,g是点集E上的可测函数,则 c f ( x ) cf(x) cf(x)(c为常数), f ( x ) + g ( x ) , f ( x ) ⋅ g ( x ) , f ( x ) / g ( x ) f(x)+g(x),f(x)·g(x),f(x)/g(x) f(x)+g(x),f(x)⋅g(x),f(x)/g(x)(假定在E上每一点,这些运算都有意义)都是E上的可测函数.
2.若{ f k f_k fk}是点集E上的可测函数列,则 lim ‾ k → + ∞ f k ( x ) , lim ‾ k → + ∞ f k ( x ) , s u p f k ( x ) , i n f f k ( x ) \underline {\lim}_{k \to +\infty} f_k(x),\overline {\lim}_{k \to +\infty} f_k(x),supf_k(x),inff_k(x) limk→+∞fk(x),limk→+∞fk(x),supfk(x),inffk(x).
3.若 f , g f,g f,g都是E上的可测函数,则 m a x ( f ( x ) , g ( x ) ) 和 m i n ( f ( x ) , g ( x ) ) max(f(x),g(x))和min(f(x),g(x)) max(f(x),g(x))和min(f(x),g(x))在 E上可测.
4.若 lim k → ∞ f k ( x ) \lim_{k \to {\infty}}f_k(x) limk→∞fk(x)对任意 x ∈ E x\in E x∈E有意义,则 lim k → ∞ f k ( x ) \lim_{k \to {\infty}}f_k(x) limk→∞fk(x)为可测函数.
5.若 f f f是点集 E E E上的可测函数, E 0 E_0 E0是E上的可测函数, E 0 E_0 E0是E的可测子集.则 f f f在点集 E 0 E_0 E0上的限制是 E 0 E_0 E0上的可测函数.
6.设{ E k E_k Ek}为可测集列,若函数 f f f在每个点集 E k E_k Ek上可测,则 f f f在点集 E = ⋃ k = 1 ∞ E k E=\bigcup_{k=1}^{\infty}E_k E=k=1⋃∞Ek上可测.
6.可测函数的逼近原理
1.若函数
f
f
f在E非负可测,则存在非负简单函数的递增列{
φ
k
\varphi_k
φk}(即
0
≤
φ
k
≤
φ
k
+
1
,
k
=
1
,
2
,
3......
0\leq \varphi_k \leq \varphi_{k+1},k=1,2,3......
0≤φk≤φk+1,k=1,2,3......)使得
lim
k
→
∞
φ
k
(
x
)
=
f
(
x
)
,
x
∈
E
\lim_{k \to {\infty}} \varphi_k(x)=f(x),x\in E
k→∞limφk(x)=f(x),x∈E.
2.若函数
f
f
f是在
E
E
E上的(变号的)可测函数,则存在简单函数列{
φ
k
\varphi_k
φk},满足
∣
φ
k
∣
≤
∣
f
(
x
)
∣
|\varphi_k|\leq |f(x)|
∣φk∣≤∣f(x)∣,且使得
lim
k
→
∞
φ
k
(
x
)
=
f
(
x
)
,
x
∈
E
\lim_{k \to {\infty}} \varphi_k(x)=f(x),x\in E
k→∞limφk(x)=f(x),x∈E.若
f
f
f还是有界的,则上述收敛是一致的.
3.若
∣
f
k
∣
|f_k|
∣fk∣是E上的可测函数列,
lim
k
→
∞
f
k
(
x
)
=
f
(
x
)
\lim_{k \to {\infty}}f_k(x)=f(x)
k→∞limfk(x)=f(x)a.e.于E,则函数f在E上可测.
7.Egorov定理
1.设
E
⊂
R
n
E\subset R^n
E⊂Rn可测且
m
E
<
∞
mE<\infty
mE<∞,{
f
k
f_k
fk}是在
E
E
E上几乎处处有限又几乎处处收敛的可测函数列,并且它的极限函数
f
f
f在
E
E
E上也是几乎处处有限的,则对于任意正数
δ
\delta
δ,存在E的可测子集
E
δ
<
δ
E_{\delta}<\delta
Eδ<δ,而在
E
\
E
δ
E\backslash E_{\delta}
E\Eδ上,{
f
k
f_k
fk}一致收敛于
f
f
f.
2.设
E
⊂
R
n
E\subset R^n
E⊂Rn可测,{
f
k
f_k
fk}与
f
f
f是在
E
E
E上几乎处处有限的可测函数列,则{
f
k
f_k
fk}在
A
(
⊂
E
)
A(\subset E)
A(⊂E)一致收敛到
f
f
f的充分必要条件的存在自然数的递增列{
k
l
k_l
kl},使得
A
=
⋂
l
=
1
∞
⋂
k
=
k
l
∞
A
k
l
A=\bigcap_{l=1}^{\infty}\bigcap_{k=k_l}^{\infty}A_{kl}
A=l=1⋂∞k=kl⋂∞Akl其中
A
k
l
A_{kl}
Akl是由(1)表示的集合.
2.设
E
⊂
R
n
E\subset R^n
E⊂Rn可测且
m
E
<
∞
mE<\infty
mE<∞,{
f
k
f_k
fk}是在E上几乎处处有限又几乎处处收敛的可测函数列,并且它的极限函数
f
f
f在
E
E
E上也是几乎处处有限的,则对于任意正整数
l
l
l有,
lim
l
→
∞
(
⋃
k
=
j
∞
B
k
l
)
=
0
\lim_{l\to {\infty}}(\bigcup_{k=j}^{\infty}B_{kl})=0
l→∞lim(k=j⋃∞Bkl)=0其中
B
k
l
=
{
x
∈
E
∣
∣
f
k
(
x
)
−
f
(
x
)
∣
≥
1
/
l
}
B_{kl}=\lbrace x\in E | |f_k(x)-f(x)|\geq1/l\rbrace
Bkl={x∈E∣∣fk(x)−f(x)∣≥1/l}
8.依测度收敛
1.设函数
f
f
f及
f
k
(
k
=
1
,
2
,
.
.
.
)
f_k(k=1,2,...)
fk(k=1,2,...)在
E
⊂
R
n
E\subset R_n
E⊂Rn上可测且几乎处处有限.若对任意的
ε
>
0
\varepsilon >0
ε>0有
lim
k
→
∞
m
(
{
x
∈
E
∣
∣
f
k
(
x
)
−
f
(
x
)
∣
≥
ε
}
)
=
0
\lim_{k \to {\infty}}m(\lbrace x\in E | |f_k(x)-f(x)|\geq \varepsilon \rbrace)=0
k→∞limm({x∈E∣∣fk(x)−f(x)∣≥ε})=0则称函数列{
f
k
f_k
fk}依测度收敛于f.
2.若
f
f
f和
f
k
(
k
=
1
,
2.....
)
f_k(k=1,2.....)
fk(k=1,2.....)是在E上几乎处处有限的可测函数,
m
E
<
∞
mE<\infty
mE<∞,并且
f
k
(
x
)
→
f
(
x
)
a
.
e
.
f_k(x)\to f(x)a.e.
fk(x)→f(x)a.e.于
E
E
E,则在
E
E
E上{
f
k
(
x
)
f_k(x)
fk(x)}依测度收敛于
f
f
f.
9. 依测度收敛的极限唯一性
1.若函数列{f_k}在点集E上同时依测度收敛到 f f f和 g g g,则 f f f和 g g g在 E E E对等.
10.里斯(F.Risez)定理
1.若{
f
k
f_k
fk}在E上依测度收敛到
f
f
f,则必有子序列在
E
E
E上几乎处处收敛到
f
f
f.
2.假设
f
f
f,
f
k
(
l
k
=
1
,
2....
)
f_k(lk=1,2....)
fk(lk=1,2....)是在
E
E
E上几乎处处收敛的可测函数.若对于任意的正整数l有
lim
j
→
i
n
f
t
y
m
(
⋃
k
=
j
∞
{
x
∈
E
∣
∣
f
k
(
x
)
−
f
(
x
)
∣
≥
1
/
l
}
)
=
0
\lim_{j \to {infty}}m(\bigcup_{k=j}^{\infty}\lbrace x \in E| |f_k(x)-f(x)|\geq1/l\rbrace)=0
j→inftylimm(k=j⋃∞{x∈E∣∣fk(x)−f(x)∣≥1/l})=0则
lim
k
→
∞
f
k
(
x
)
=
f
(
x
)
a
.
e
.
x
∈
E
\lim_{k \to {\infty}}f_k(x)=f(x) a.e.x\in E
k→∞limfk(x)=f(x)a.e.x∈E
11. Lusin定理
1.若
f
f
f是在
E
⊂
R
n
E\subset R^n
E⊂Rn是几乎处处有限的可测函数,则对于任意
ε
>
0
\varepsilon>0
ε>0,存在闭集
F
⊂
E
F \subset E
F⊂E,使得
f
f
f在
F
F
F上连续且
m
(
E
\
F
)
<
ε
m(E\backslash F)<\varepsilon
m(E\F)<ε.
2.若
f
f
f是可测集
E
⊂
R
n
E\subset R^n
E⊂Rn上的可测函数,则对于任意正数
ε
\varepsilon
ε,存在
R
n
R^n
Rn上的连续函数
g
g
g,使得
m
{
x
∈
E
∣
f
(
x
)
≠
g
(
x
)
}
<
ε
m\lbrace x \in E|f(x)\neq g(x)\rbrace <\varepsilon
m{x∈E∣f(x)̸=g(x)}<ε若
f
(
x
)
f(x)
f(x)还有界:
∣
f
(
x
)
∣
≤
M
(
x
∈
E
)
|f(x)|\leq M(x\in E)
∣f(x)∣≤M(x∈E),则连续函数
g
g
g还可以满足
∣
g
(
x
)
∣
≤
M
(
∀
x
∈
R
n
)
|g(x)|\leq M(\forall x\in R^n)
∣g(x)∣≤M(∀x∈Rn).
12.支撑集
1.设f(x)在
R
n
R^n
Rn的某个集合E有意义,称集合
{
x
∈
E
∣
f
(
x
)
≠
0
}
\lbrace x\in E|f(x) \neq 0 \rbrace
{x∈E∣f(x)̸=0}的闭包为
f
f
f的支(撑)集,记为supp
f
f
f,即
s
u
p
p
f
=
{
x
∈
E
∣
f
(
x
)
≠
0
}
‾
\rm{supp} \it{f=\overline{\lbrace x\in E |f(x)\neq 0 \rbrace}}
suppf={x∈E∣f(x)̸=0}
若
f
f
f的的支(撑)集是
R
n
R^n
Rn的有界闭集,则称
f
f
f是具有紧支集的.
2.设
f
f
f在
E
⊂
R
n
E\subset R^n
E⊂Rn可测,E有界,则对任意
ε
>
0
\varepsilon >0
ε>0,存在具有紧支集的连续函数
g
g
g使得
m
{
x
∈
E
∣
f
(
x
)
≠
g
(
x
)
}
<
ε
m\lbrace x \in E |f(x)\neq g(x) \rbrace<\varepsilon
m{x∈E∣f(x)̸=g(x)}<ε