实变函数(3)-可测函数

1. 测度的补充

可测集是这样的点集,任意两个被它隔离的点集,其外测度都可加.

2.可测函数的概念

E ⊂ R n E\subset R^n ERn可测, f f f是定义于E上的广义实值函数.若对于任意实数 a a a,点集{ x ∣ x ∈ E , f ( x ) > a x|x\in E,f(x)>a xxE,f(x)>a}是 R n R^n Rn内的可测集,则 f f f称为E上的Lebesgue可测函数,简称 f f f是E上的可测函数或 f f f在E上可测.

3.可测函数的性质

1.设 f f f是可测集E上的广义实值函数,则下列命题等价:
(1)f在E上可测;
(2)对任意实数 a a a,点集 E ( f ≥ a ) E(f\geq a) E(fa)可测;
(3)对任意实数 a a a,点集 E ( f &lt; a ) E(f&lt;a) E(f<a)可测;
(4)对任意实数 a a a,点集 E ( f ≤ a ) E(f\leq a) E(fa)可测;

4.简单函数

若函数 φ \varphi φ定义在 E ⊂ R n E\subset R^n ERn上,只取有限个不同的值 a 1 , a 2 , . . . . , a k a_1,a_2,....,a_k a1,a2,....,ak,并且对每一个 i i i,取值 a i a_i ai的点集 E i ( x ∣ x ∈ E ∣ φ ( x ) = a i ) E_i(x|x\in E|\varphi(x)=a_i) Ei(xxEφ(x)=ai)都是可测集,则称 φ \varphi φ为E上的简单函数(这是E一定可测).当 E i E_i Ei是矩体时,称 φ \varphi φ为阶梯函数.

5.可测函数的四则运算与极限性质

1.若 f , g f,g f,g是点集E上的可测函数,则 c f ( x ) cf(x) cf(x)(c为常数), f ( x ) + g ( x ) , f ( x ) ⋅ g ( x ) , f ( x ) / g ( x ) f(x)+g(x),f(x)·g(x),f(x)/g(x) f(x)+g(x),f(x)g(x),f(x)/g(x)(假定在E上每一点,这些运算都有意义)都是E上的可测函数.

2.若{ f k f_k fk}是点集E上的可测函数列,则 lim ⁡ ‾ k → + ∞ f k ( x ) , lim ⁡ ‾ k → + ∞ f k ( x ) , s u p f k ( x ) , i n f f k ( x ) \underline {\lim}_{k \to +\infty} f_k(x),\overline {\lim}_{k \to +\infty} f_k(x),supf_k(x),inff_k(x) limk+fk(x),limk+fk(x),supfk(x),inffk(x).

3.若 f , g f,g f,g都是E上的可测函数,则 m a x ( f ( x ) , g ( x ) ) 和 m i n ( f ( x ) , g ( x ) ) max(f(x),g(x))和min(f(x),g(x)) max(f(x),g(x))min(f(x),g(x))在 E上可测.

4.若 lim ⁡ k → ∞ f k ( x ) \lim_{k \to {\infty}}f_k(x) limkfk(x)对任意 x ∈ E x\in E xE有意义,则 lim ⁡ k → ∞ f k ( x ) \lim_{k \to {\infty}}f_k(x) limkfk(x)为可测函数.

5.若 f f f是点集 E E E上的可测函数, E 0 E_0 E0是E上的可测函数, E 0 E_0 E0是E的可测子集.则 f f f在点集 E 0 E_0 E0上的限制是 E 0 E_0 E0上的可测函数.

6.设{ E k E_k Ek}为可测集列,若函数 f f f在每个点集 E k E_k Ek上可测,则 f f f在点集 E = ⋃ k = 1 ∞ E k E=\bigcup_{k=1}^{\infty}E_k E=k=1Ek上可测.

6.可测函数的逼近原理

1.若函数 f f f在E非负可测,则存在非负简单函数的递增列{ φ k \varphi_k φk}(即 0 ≤ φ k ≤ φ k + 1 , k = 1 , 2 , 3...... 0\leq \varphi_k \leq \varphi_{k+1},k=1,2,3...... 0φkφk+1,k=1,2,3......)使得 lim ⁡ k → ∞ φ k ( x ) = f ( x ) , x ∈ E \lim_{k \to {\infty}} \varphi_k(x)=f(x),x\in E klimφk(x)=f(x),xE.
2.若函数 f f f是在 E E E上的(变号的)可测函数,则存在简单函数列{ φ k \varphi_k φk},满足 ∣ φ k ∣ ≤ ∣ f ( x ) ∣ |\varphi_k|\leq |f(x)| φkf(x),且使得 lim ⁡ k → ∞ φ k ( x ) = f ( x ) , x ∈ E \lim_{k \to {\infty}} \varphi_k(x)=f(x),x\in E klimφk(x)=f(x),xE.若 f f f还是有界的,则上述收敛是一致的.
3.若 ∣ f k ∣ |f_k| fk是E上的可测函数列, lim ⁡ k → ∞ f k ( x ) = f ( x ) \lim_{k \to {\infty}}f_k(x)=f(x) klimfk(x)=f(x)a.e.于E,则函数f在E上可测.

7.Egorov定理

1.设 E ⊂ R n E\subset R^n ERn可测且 m E &lt; ∞ mE&lt;\infty mE<,{ f k f_k fk}是在 E E E上几乎处处有限又几乎处处收敛的可测函数列,并且它的极限函数 f f f E E E上也是几乎处处有限的,则对于任意正数 δ \delta δ,存在E的可测子集 E δ &lt; δ E_{\delta}&lt;\delta Eδ<δ,而在 E \ E δ E\backslash E_{\delta} E\Eδ上,{ f k f_k fk}一致收敛于 f f f.
2.设 E ⊂ R n E\subset R^n ERn可测,{ f k f_k fk}与 f f f是在 E E E上几乎处处有限的可测函数列,则{ f k f_k fk}在 A ( ⊂ E ) A(\subset E) A(E)一致收敛到 f f f的充分必要条件的存在自然数的递增列{ k l k_l kl},使得 A = ⋂ l = 1 ∞ ⋂ k = k l ∞ A k l A=\bigcap_{l=1}^{\infty}\bigcap_{k=k_l}^{\infty}A_{kl} A=l=1k=klAkl其中 A k l A_{kl} Akl是由(1)表示的集合.
2.设 E ⊂ R n E\subset R^n ERn可测且 m E &lt; ∞ mE&lt;\infty mE<,{ f k f_k fk}是在E上几乎处处有限又几乎处处收敛的可测函数列,并且它的极限函数 f f f E E E上也是几乎处处有限的,则对于任意正整数 l l l有, lim ⁡ l → ∞ ( ⋃ k = j ∞ B k l ) = 0 \lim_{l\to {\infty}}(\bigcup_{k=j}^{\infty}B_{kl})=0 llim(k=jBkl)=0其中 B k l = { x ∈ E ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ 1 / l } B_{kl}=\lbrace x\in E | |f_k(x)-f(x)|\geq1/l\rbrace Bkl={xEfk(x)f(x)1/l}

8.依测度收敛

1.设函数 f f f f k ( k = 1 , 2 , . . . ) f_k(k=1,2,...) fk(k=1,2,...) E ⊂ R n E\subset R_n ERn上可测且几乎处处有限.若对任意的 ε &gt; 0 \varepsilon &gt;0 ε>0 lim ⁡ k → ∞ m ( { x ∈ E ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ ε } ) = 0 \lim_{k \to {\infty}}m(\lbrace x\in E | |f_k(x)-f(x)|\geq \varepsilon \rbrace)=0 klimm({xEfk(x)f(x)ε})=0则称函数列{ f k f_k fk}依测度收敛于f.
2.若 f f f f k ( k = 1 , 2..... ) f_k(k=1,2.....) fk(k=1,2.....)是在E上几乎处处有限的可测函数, m E &lt; ∞ mE&lt;\infty mE<,并且 f k ( x ) → f ( x ) a . e . f_k(x)\to f(x)a.e. fk(x)f(x)a.e. E E E,则在 E E E上{ f k ( x ) f_k(x) fk(x)}依测度收敛于 f f f.

9. 依测度收敛的极限唯一性

1.若函数列{f_k}在点集E上同时依测度收敛到 f f f g g g,则 f f f g g g E E E对等.

10.里斯(F.Risez)定理

1.若{ f k f_k fk}在E上依测度收敛到 f f f,则必有子序列在 E E E上几乎处处收敛到 f f f.
2.假设 f f f, f k ( l k = 1 , 2.... ) f_k(lk=1,2....) fk(lk=1,2....)是在 E E E上几乎处处收敛的可测函数.若对于任意的正整数l有 lim ⁡ j → i n f t y m ( ⋃ k = j ∞ { x ∈ E ∣ ∣ f k ( x ) − f ( x ) ∣ ≥ 1 / l } ) = 0 \lim_{j \to {infty}}m(\bigcup_{k=j}^{\infty}\lbrace x \in E| |f_k(x)-f(x)|\geq1/l\rbrace)=0 jinftylimm(k=j{xEfk(x)f(x)1/l})=0 lim ⁡ k → ∞ f k ( x ) = f ( x ) a . e . x ∈ E \lim_{k \to {\infty}}f_k(x)=f(x) a.e.x\in E klimfk(x)=f(x)a.e.xE

11. Lusin定理

1.若 f f f是在 E ⊂ R n E\subset R^n ERn是几乎处处有限的可测函数,则对于任意 ε &gt; 0 \varepsilon&gt;0 ε>0,存在闭集 F ⊂ E F \subset E FE,使得 f f f F F F上连续且 m ( E \ F ) &lt; ε m(E\backslash F)&lt;\varepsilon m(E\F)<ε.
2.若 f f f是可测集 E ⊂ R n E\subset R^n ERn上的可测函数,则对于任意正数 ε \varepsilon ε,存在 R n R^n Rn上的连续函数 g g g,使得 m { x ∈ E ∣ f ( x ) ≠ g ( x ) } &lt; ε m\lbrace x \in E|f(x)\neq g(x)\rbrace &lt;\varepsilon m{xEf(x)̸=g(x)}<ε f ( x ) f(x) f(x)还有界: ∣ f ( x ) ∣ ≤ M ( x ∈ E ) |f(x)|\leq M(x\in E) f(x)M(xE),则连续函数 g g g还可以满足 ∣ g ( x ) ∣ ≤ M ( ∀ x ∈ R n ) |g(x)|\leq M(\forall x\in R^n) g(x)M(xRn).

12.支撑集

1.设f(x)在 R n R^n Rn的某个集合E有意义,称集合 { x ∈ E ∣ f ( x ) ≠ 0 } \lbrace x\in E|f(x) \neq 0 \rbrace {xEf(x)̸=0}的闭包为 f f f的支(撑)集,记为supp f f f,即
s u p p f = { x ∈ E ∣ f ( x ) ≠ 0 } ‾ \rm{supp} \it{f=\overline{\lbrace x\in E |f(x)\neq 0 \rbrace}} suppf={xEf(x)̸=0}
f f f的的支(撑)集是 R n R^n Rn的有界闭集,则称 f f f是具有紧支集的.
2.设 f f f E ⊂ R n E\subset R^n ERn可测,E有界,则对任意 ε &gt; 0 \varepsilon &gt;0 ε>0,存在具有紧支集的连续函数 g g g使得 m { x ∈ E ∣ f ( x ) ≠ g ( x ) } &lt; ε m\lbrace x \in E |f(x)\neq g(x) \rbrace&lt;\varepsilon m{xEf(x)̸=g(x)}<ε

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值