场景文字识别论文阅读

由粗到细的注意力机制
Image-to-Markup Generation with Coarse-to-Fine Attention
图片的多层卷积网络+结合了多行循环网络模型的encoder+基于注意力机制的循环decoder


CNN 输出 进入 行encoder,生成特征灰色网格,虚线指出token的中心,蓝色是粗粒度注意力选出的符号0的支撑集

成就:减少注意力开支
全栅格encoder:不一定从左到右
由一个解决image captioning的模型改编而来,但添加了row encoder

模型

在这里插入图片描述

  1. CNN 图片卷积,生成灰度栅格图(包含抽象特征)[feature map]
  2. RNN(row encoder) 对灰度grid 的每一行进行编码,提取空间布局信息,生成特征[fine feature]
  3. 2变体,提取[coarse feature],来决定2的support region(蓝色)
  4. 包含注意力机制的RNN(decoder),一个词汇表上的条件语言模型[final output]

具体实现

1 CNN卷积

多层卷积穿插最大池化,没有使用最终全连接(因为想使用CNN特征的局部信息,视觉注意力)

2 row encoder

传统使用CTC(分割字母,得到剪枝的所有可能结果并预测概率)
对OCR至关重要,定位相对位置
使用的LSTM模型(RNN的一种)
位置嵌入:可训练的初始隐藏层,捕捉列信息【?】

3 decoder

在[decoder RNN]上层有[条件语言模型]
计算 P(预测值 | 过去decoder结果、特征V) = 激活函数(学习到的矩阵Ot)
Ot = 激活函数 (学到的矩阵
(RNN历史记录向量*ct))
ct:上下文注意力。上下文:对源的特征的期望

4 注意力机制

标准、分类、由粗到细

基础 连接主义文本提议网络

Detecting Text in Natural Image with Connectionist Text Proposal Network
ECCV 2016
https://github.com/eragonruan/text-detection-ctpn

目标

  1. 准确定位自然图像中的文本行:垂直锚点机制,固定宽度划分文本与非文本
  2. 定位文字提案,循环连接固定宽度的锚点提议:BRNN网内循环架构,用于按顺序连接这些细粒度的文本提议序列提议,通过循环神经网络自然地连接起来

方法

  • CPTR网络:由卷积网络、特征映射图组成。卷积采用由VGG16(迁移学习)网络结构
  • VGG16使用的层:
    • RNN:带反馈的、可以利用先前知识的CNN,利用文本序列性特性
      • 层使用的神经元:LSVM:可以学习长期依赖信息的RNN。只有一些少量的线性交互
    • 双向循环神经网络(BRNN):不仅考虑过去知识,还考虑未来
  • 非极大值抑制

结果

CTPN的计算效率为0.14s每张图像
在这里插入图片描述

分割 实例分割检测场景文本

PixelLink: Detecting Scene Text via Instance Segmentation
AAAI 2018
https://github.com/ZJULearning/pixel_link

VGG16通过像素二分类划分,直接提取边框

扭曲文字识别

TextSnake A Flexible Representation for Detecting Text of Arbitrary Shapes
ECCV2018
https://github.com/princewang1994/TextSnake.pytorch

论文介绍详细,甚至包括网络调参细节、batch设计和GPU设计等

目标

识别以曲线方式分布的文字
在这里插入图片描述
在这里插入图片描述

方法

  1. FCN全卷积网络:分为卷积和上采样,卷积使图片越来越模糊,最终确定类别;上采样确定原图像素点的类别。(网络卷积部分还是VGG)
  2. 网络得到7个通道结果:网络得到文字区域及区域中心线、区域角度等信息;分割成不同区域
  3. 跨步滑动形成圆盘(原理:如果曲率大,则跨步小,描绘出整个曲线)圆盘半径与跨步长度有关(为什么要设计圆盘?分开文字后续进行文字识别?)

数据

该文提出了一种新的文字区域表示方法,没有现成数据集,需要自己制作标签(区域和中心线)

损失函数

损失 = 区域和中心线的分类损失(交叉熵,类似极大似然,取概率最大的类分类) + r sin cos等几何属性的回归损失(smooth1Loss,一个更优的均方误差函数)

评价指标

评价指标有准确率(Precision)、召回率(Recall)、F值(F-Measure)
召回率:度量有多个正例被分为正例
精度:表示被分为正例的示例中实际为正例的比例。
F:两者调和 当F1较高时则能说明试验方法比较有效

语义增强

SEED Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition
CVPR2020
https://github.com/Pay20Y/SEED

目标

识别出单词并进行矫正,应对诸如图像模糊、光照不均、字符不完整等诸多挑战

发展历程

  1. 自底向上:SVM等对字母识别并分类;启发式规则、语言模型或词典将它们分组到一个单词或文本行
  2. 自顶向下:将一个单词视为一个类,识别-》图像分类。技术:连接主义时间分类(CTC)和注意力机制

步骤

从一个预先训练好的语言模型中获得词语嵌入,并计算训练过程中语义信息和词语嵌入之间的损失。通过这种方式,语义信息包含更丰富的语义,
然后预测的语义信息被用来指导解码过程。因此,解码过程可以被限制在一个语义空间内,识别性能会更好
1)编码器包括 CNN骨干和 RNN 用于提取视觉特征;
2)语义模块用于从视觉特征中预测语义信息;
3)预训练语言模型用于监督语义模块预测的语义信息;
4)解码器包括 RNN 和注意机制用于生成识别结果。
在这里插入图片描述

模型

  1. 语义模块 fastText:模仿构词学,将单词间的关系用向量表示
    https://cloud.tencent.com/developer/article/1495100
  2. 编码器-解码器框架:编码器卷积和采样,生成视觉特征;解码器上采样恢复维度
  3. 文字识别 SAR 二维注意力机制模块(就是网络中的注意力模块)

超分辨率

Scene Text Image Super-Resolution via Parallelly Contextual Attention Network
ACMMM 2021
https://github.com/Vill-Lab/PCAN

SR,图片超分辨率super resolution
在这里插入图片描述

数据

该论文的主要工作是构建了新的数据集:真实的场景文本SR数据集,称为TextZoom。它包含一对真实的低分辨率和高分辨率图像

模型

对SRResNet模型进行修改
并行的上下文注意网络,主要是改变了RNN的基本单位,平行的上下文关联注意块(PCAB)
直观地说,水平方向建模用于构建字符对字符
的依赖关系,而垂直方向建模用于字符内的纹理上下文。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值