导
语
场景文本定位旨在识别自然图像中的整个单词或句子的文本位置,由于其在自动驾驶、智能导航等领域的广泛应用,最近受到越来越多的关注。
背景介绍
目前自然场景文字识别技术应用广泛,例如拍照翻译,自动驾驶,图像检索等。其中,自然场景文字定位是指对场景图像中所有文本的精确定位,由于文本存在多种变体(颜色、大小、宽高比、字体、方向、光照条件和背景等),因此自然场景中精准的文字定位是非常具有挑战性的。
本文效果
这篇论文全名为"SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition",由华南理工大学、香港中文大学、华为云人工智能、深圳鹏城实验室等多家单位的研究员共同完成。下图为本论文的定位效果(彩色部分为当前场景文字定位可视化结果)
代码实战
环境搭建
conda create -n SWINTS python=3.8 -y conda activate SWINTS conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge pip install opencv-python pip install scipy pip install shapely pip install rapidfuzz pip install timm pip install Polygon3 git clone https://github.com/mxin262/SwinTextSpotter.git cd SwinTextSpotter python setup.py build develop
基于Swin-Transformer backbone训练模型
python projects/SWINTS/train_net.py \ --num-gpus 8 \ --config-file projects/SWINTS/configs/SWINTS-swin-pretrain.yaml
基于已有权重进行finetune
python projects/SWINTS/train_net.py \ --num-gpus 8 \ --config-file projects/SWINTS/configs/SWINTS-swin-mixtrain.yaml
可视化检测结果
python demo/demo.py \ --config-file projects/SWINTS/configs/SWINTS-swin-finetune-totaltext.yaml \ --input input1.jpg \ --output ./output \ --confidence-threshold 0.4 \ --opts MODEL.WEIGHTS ./output/model_final.pth
资源下载
关于本论文涉及的数据集和模型权重,已打包放入百度网盘。关注公众号实用AI客栈,在后台回复1001即可获取下载链接。
分享人工智能领域最新资讯,讲解各类实用的算法和模型。
权重和数据集打包