MLlib for Spark
K-means
1.K-means (scala)
// Load and parse the data.
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map(_.split(‘ ').map(_.toDouble)).cache()
// Cluster the data into five classes using KMeans.
val clusters = KMeans.train(parsedData, 5, numIterations = 20)
!
// Compute the sum of squared errors.
val cost = clusters.computeCost(parsedData)
println("Sum of squared errors = " + cost)
2.K-means (python)
# Load and parse the data
data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line:
array([float(x) for x in line.split(' ‘)])).cache()
# Build the model (cluster the data)
clusters = KMeans.train(parsedData, 5, maxIterations = 20,runs = 1,initialization_mode = "kmeans||")
# Evaluate clustering by computing the sum of squared errors
def error(point):
center = clusters.centers[clusters.predict(point)]
return sqrt(sum([x**2 for x in (point - center)]))
cost = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y)
print("Sum of squared error = " + str(cost))
降维+K-means
// compute principal components
val points: RDD[Vector] = ...
val mat = RowMatrix(points)
val pc = mat.computePrincipalComponents(20)
// project points to a low-dimensional space
val projected = mat.multiply(pc).rows
// train a k-means model on the projected data
val model = KMeans.train(projected, 10)
Streaming + MLlib
// collect tweets using streaming
// train a k-means model
val model: KMmeansModel = ...
// apply model to filter tweets
val tweets = TwitterUtils.createStream(ssc, Some(authorizations(0)))
val statuses = tweets.map(_.getText)
val filteredTweets =
statuses.filter(t => model.predict(featurize(t)) == clusterNumber)
// print tweets within this particular cluster
filteredTweets.print()
协同过滤
目标:从其条目的子集中恢复矩阵。(再理解。)
Collaborative filtering
// Load and parse the data
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(',') match {
case Array(user, item, rate) =>
Rating(user.toInt, item.toInt, rate.toDouble)
})
// Build the recommendation model using ALS
val numIterations = 20
val rank = 10
val regularizer = 0.01
val model = ALS.train(ratings, rank, numIterations, regularizer)
// Evaluate the model on rating data
val usersProducts = ratings.map { case Rating(user, product, rate) =>
(user, product)
}
val predictions = model.predict(usersProducts)
Spark Streaming
What:扩展Spark用于进行大数据流处理
why
许多大数据应用程序需要实时处理大数据流:网站监控、欺诈检测、广告获利
Advantage
缩放到数百个节点
实现低延迟
从故障中有效恢复
集成批处理和交互式处理
现有的流系统
Storm
- 如果节点未处理,则重播记录
- 处理每个记录至少一次
- 可以更新可变状态两次!
- 可变状态可能会由于失败而丢失!
Trident
- 使用事务更新状态
- 每个记录只处理一次
- 对外部数据库的每状态事务很慢
Spark Streaming
将流计算作为一系列非常小的确定性批处理作业运行
- 将实况流切成X秒的批次
- Spark将每个批处理的数据作为RDD,使用RDD操作进行处理
- 最后,RDD操作的处理结果分批返回
编程模型 - DStream
离散流(DStream)
- 表示数据流
- 实现为一系列RDD
示例 - 从Twitter获取标签
val ss = new StreamingContext(sparkContext,Seconds(1))
val tweets = TwitterUtils.createStream(ssc,auth)
Input DStream:tweets
val tweets = TwitterUtils.createStream(ssc,None)
val hashTags =tweets.flatMap(status=>getTags(status))
transformed DStream:hashTags
transformation:flatMap
hashTags.saveAsHadoopFiles(“hdfs://…”)
output operation:saveAsHadoopFiles
hashTags.foreachRDD(hashTagRDD=>{…})
1.指定函数以根据先前状态和新数据生成新状态
示例:将每个用户的心情保持为状态,并使用他们的tweets进行更新
def updateMood(newTweets,lastMood)=>newMood
val moods=tweetsByUser.updateStateByKey(updateMood_)
2.混合RDD和DStream操作
- 示例:使用垃圾邮件HDFS文件加入传入的tweets,以过滤掉不正确的tweets
tweets.transform(tweetsRDD=>tweetsRDD.join(spamFile).filter(…)})
3.混合RDD和DStream
- 将实时数据流与历史数据组合
- 使用Spark等生成历史数据模型
- 使用数据模型处理实时数据流
- 将流与MLlib,GraphX algos组合
- 离线学习,在线预测
- 在线学习和预测
- 使用SQL查询流数据
- select * from table_from_streaming_data
4.统一栈的优点
以交互方式探索数据以识别问题
在Spark中使用相同的代码来处理大型日志
在Spark Streaming中使用类似的代码进行实时处理
5.容错
- 输入数据批次会复制到内存中以实现容错
- 由于工作程序失败导致的数据丢失可以从复制的输入数据重新计算
- 所有的变换都是容错的,一次性的变换
6.输入源
Kafka,Flume,Akka Actors,原始TCP套接字,HDFS等。