下方代码的主要目的是生成一个3行4列的随机整数数组,数组中的元素取值范围是0到20(不包括20)。
# coding=utf-8
import numpy as np
# 设置随机数种子,以便每次运行代码时都能得到相同的随机数结果
# 这对于调试和复现结果非常有用
np.random.seed(10)
# 使用numpy的random模块的randint函数生成随机整数
# 参数说明:
# 0: 随机数的最小值(包括)
# 20: 随机数的最大值(不包括)
# (3, 4): 生成一个3行4列的数组
t = np.random.randint(0, 20, (3, 4))
# 打印生成的随机数组
print(t)
这段代码首先设置了随机数种子,以便每次运行代码时都能得到相同的随机数结果。然后,它使用np.random.randint
函数生成一个3行4列的随机整数数组,数组中的元素取值范围是0到20(不包括20)。最后,它打印出生成的随机数组。
除此之外,numpy.random
模块提供了多种生成随机数组的函数,以下是一些常见的函数:
-
rand
: 生成一个均匀分布的随机数组。 -
randn
: 生成一个标准正态分布的随机数组。 -
randint
: 生成一个随机整数数组。 -
random
: 生成一个0到1之间的随机数组。 -
choice
: 从给定的1维数组中随机选择元素。 -
shuffle
: 对一个数组进行随机排序。 -
normal
: 生成一个正态(高斯)分布的随机数组。 -
uniform
: 生成一个均匀分布的随机数组。
下面是一些使用这些函数的示例代码:
import numpy as np
# 设置随机数种子
np.random.seed(10)
# 生成一个3行4列的均匀分布的随机数组
t_rand = np.random.rand(3, 4)
print("Uniform distribution:")
print(t_rand)
# 生成一个3行4列的标准正态分布的随机数组
t_randn = np.random.randn(3, 4)
print("\nStandard normal distribution:")
print(t_randn)
# 生成一个3行4列的随机整数数组,取值范围是0到20
t_randint = np.random.randint(0, 20, (3, 4))
print("\nRandom integers:")
print(t_randint)
# 从给定的数组中随机选择一个元素
arr = np.array([1, 2, 3, 4, 5])
choice = np.random.choice(arr)
print("\nRandom choice from array:", choice)
# 对数组进行随机排序
np.random.shuffle(arr)
print("\nShuffled array:", arr)
# 生成一个正态分布的随机数组
t_normal = np.random.normal(0, 1, (3, 4))
print("\nNormal distribution:")
print(t_normal)
# 生成一个均匀分布的随机数组
t_uniform = np.random.uniform(0, 1, (3, 4))
print("\nUniform distribution:")
print(t_uniform)
这些函数可以根据需要选择使用,以生成不同分布和形状的随机数组。