旋转矩阵

文章介绍了向量的内积与外积概念,内积等于向量模长乘以夹角余弦,而外积的大小是模长乘以夹角正弦。外积形成的矩阵是反对称的。接着讨论了欧式变换中的刚体运动,特别是旋转部分,通过旋转矩阵R描述坐标系间的变换,该矩阵具有行列式为1和正交的性质。
摘要由CSDN通过智能技术生成

两个向量的内积和外积

两个向量a.b内积 点乘 a.b = a^Tb = |a| |b|cos<a,b>;  <a,b>指向量a,b的夹角

两个向量a,b外积 叉乘  

        a \times b = \left \| \begin{aligned} e1 \ e2 \ e3 \\ a1 \ a2 \ a3 \\b1 \ b2 \ b3 \end{aligned} \right \| = \left \[ \begin{aligned} a2b3 - a3b2 \\ a3b1 - a1b3 \\ a1b2 - a2b1 \end{aligned} \right \] = \left \[ \begin{aligned} 0 \ -a3 \ a2 \\ a3 \ 0 \ -a1 \\ -a2 \ a1 \ 0 \end{aligned} \right \] b \overset{def}{=} a \wedge b

大小为|a||b|sin<a,b>,对于外积引入一个^符号,把向量a写成一个矩阵,事实就是一个反对称矩阵,

反对称矩阵是一个对角线为0,如果第i行j列数不为0,那么第j行i列是相反数

把a*b = a^b  ,请主要a ^ 如果为3*3矩阵的:如下

 a\wedge = \left [ \begin{aligned} 0 \ \text{-} a3 \ a2 \\ a3 \ 0 \ \text{-} a1 \\ \text{-}a2 \ a1 \ 0 \end{aligned} \right ]

坐标系间的欧氏变换

两个坐标系之间的运动由一个旋转加上一个平移组成,这种运动叫刚体运动,刚体意味着,在转换时不会发生形变.

欧式变换是由旋转和平移组成,首先来考虑旋转,假设单位一个正交基(e1,e2,e3),经过一次旋转变成了(e1`, e2`, e3`),那么对于同一个向量a,他在相机坐标和世界坐标分别为[a1,a2,a3]T和[a1`,a2`,a3`]T,有

[e1 \ e2 \ e3 ] \left[ \begin{aligned} a1 \\ a2 \\ a3 \end{aligned} \right ] = [e1{}' \ e2{}' \ e3{}'] \left[ \begin{aligned} a1{}' \\ a2{}' \\ a3{}' \end{aligned} \right ]

两边同时左乘[e1T,e2T, e3T],左边变成了单位矩阵,

\left[ \begin{aligned} a1 \\ a2 \\ a3 \end{aligned} \right ] = \left[ \begin{aligned} e{1}^T e{1}{}' \ e{1}^T e{2}{}' \ e{1}^T e{3}{}' \\ e{2}^T e{1}{}' \ e{2}^T e{2}{}' \ e{2}^T e{3}{}' \\ e{3}^T e{1}{}' \ e{3}^T e{2}{}' \ e{3}^T e{3}{}' \end{aligned} \right ] = \left[ \begin{aligned} a1{}' \\ a2{}' \\ a3{}' \end{aligned} \right ] \overset{def}{=} Ra{}'

我们把右边的中间这个复杂矩阵拿出来,定义成矩阵R,这个矩阵是两个基之间的内积组成,刻画了旋转前后同一个向量的坐标变换关系,我们把矩阵R描述了旋转本身,称为旋转矩阵.

旋转矩阵的一些性质:它是行列式为1的正交方阵,反之行列式为1的正交矩阵是旋转矩阵.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值