【Σ-Δ型ADC芯片】

前言

前边讲了ADC的各种参数,这里具体介绍Σ-Δ型ADC,这个是ADC类型里比较难理解的一种,我先介绍这种,之后再介绍其他类型的ADC。


一、Σ-Δ型ADC工作原理

和一般的ADC不同,Σ-Δ型ADC不是直接根据抽样数据的每一样值得大小进行量化编码,而是根据前一量值和后一量值的差值,即增量的大小进行量化编码。Δ表示增量,Σ表示积分或求和。Σ-Δ型ADC工作原理可以分为:过采样、噪声整形、数字滤波。又可以分为两个模块:Σ-Δ调制器和数字抽取滤波器。 Σ-Δ调制器把模拟输入信号转换成高速脉冲数字信号,脉冲占空比反映了模拟输入电压的大小;数字滤波器滤除含有噪声的数字信号,得到低噪声、高精度的转换结果。

这里先简单说一下原理,后边会详细推导的。

二、Σ-Δ型ADC

1.理论分析

我们都知道,ADC是将连续的模拟信号转化为离散的数字信号,这样就会带来量化噪声,理想状态下量化噪声分布规律,如图1,我们计算出量化噪声的功率,那就可以计算出SNR(只考虑量化噪声)。但如果ADC的采样速率提高,那么ADC采样间距更小,反映到量化噪声上,就是Q的幅值更小,但是量化噪声的密度更大,所以总的量化噪声还是不变的,信噪比也是不变的,转化到频域上,结果就是图2 ,总的量化噪声之和不变,但是将量化噪声分布在更宽的频率范围,范围大了,就是造成底噪更低。这条规律是适应于所有ADC原理的,当然也适应于Σ-Δ型ADC。Σ-Δ型ADC不同于其他ADC的,是后续的处理手段。
在这里插入图片描述
图1 量化噪声分布
在这里插入图片描述
图2 量化噪声分布整形

之后就是进行数字滤波和抽取,将数字滤波器带宽以外的噪声滤除掉,这样就可以提升带宽范围内的信噪比了。之后从数据流中提取出有用的信息,并将速率降低到可用的水平。Σ-ΔADC中的数字滤波器对1位数据流求平均,滤除目标带宽以外的量化噪声,并改善ADC的分辨率。

2.电路分析

Σ-Δ型ADC的总体框图如图3所示,它包含以下元素:采样保持放大器、差分放大器或减法器、模拟低通滤波器(或积分器)、1位A / D转换器(比较器)、1位DAC、数字滤波器。Σ-Δ调制器把模拟输入信号转换成高速脉冲数字信号,脉冲占空比反映了模拟输入电压的大小;数字滤波器滤除含有噪声的数字信号,得到低噪声、高精度的转换结果。
模拟Σ-Δ调制器,如图4所示,利用差分放大器对前一量值和后一量值得到差值,积分器对差分放大器输出的模拟信号进行积分。对输入信号表现为低通滤波器,而对于量化噪声则表现为高通滤波器。这样就将量化噪声展开在更高的频段,虽然总体噪声功率没变,但噪声分布在更宽带宽范围内。之后把积分的输出信号送入到比较器,即1bit的模数转化器,积分结果转化为“0”或“1”的数字信号。 调制器输出中“1”的密度正比于输入信号,如果输入电压上升,比较器将产生更多数量的"1",反之亦然。
在这里插入图片描述
图3 Σ-Δ型ADC的总体框图
在这里插入图片描述
图4 模拟Σ-Δ调制器

从时域和频域的角度看调制器的输入输出,如图5所示。时域上,Σ-Δ调制器把模拟输入信号转换成高速脉冲数字信号,脉冲占空比反映了模拟输入电压的大小;频域上,量化噪声被整形分布更宽频率范围。
在这里插入图片描述
图5 调制器的时域和频域的输入输出

之后再经过数字滤波器滤掉带宽外多余的噪声,就可以以低位数获得高信噪比。

总结

模拟Σ-Δ调制器以极高的抽样频率对输入模拟信号进行抽样,并对两个抽样之间差值进行低位量化,从而得到用低位数码表示的数字信号即Σ-Δ码;然后将Σ-Δ码送给第二部分的数字抽取滤波器进行抽取滤波,从而得到高分辨率的线性脉冲编码调制的数字信号。Σ-Δ型ADC实际上是一种用高采样速率来换取高位量化,即以速率换分辨率的方案。这种类型的ADC采用了极低位的量化器, 从而避免了制造高位转换器和高精度电阻网络的困难;另一方面,因为它采用了Σ-Δ调制技术和数字抽取滤波,可以获得极高的分辨率;同时由于采用了低位量化输出的Σ-Δ码,不会对抽样值幅度变化敏感,而且由于码位低,抽样与量化编码可以同时完成,几乎不花时间,因此不需要采样保持电路,这就使得采样系统的构成大为简化。这种增量调制型ADC实际上是以高速抽样率来换取高位量化,即以速度来换精度。
一个1位 ADC的SNR为7.78dB(6.02+1.76),每4倍过采样可以使SNR增加6dB,SNR每增加6dB等效于分辨率增加1-bit。这样,采用1位 ADC进行64倍(即444倍)过采样可以获得4位分辨率。Σ-Δ转换器采用噪声整形技术使得每4倍过采样可增加高于6dB的SNR。

### 回答1: 高精度增量式σ-δADC是一种在模拟-数字转换领域中的研究和设计。该ADC(模拟-数字转换器)是一种基于Sigma-Delta调制技术的转换器,旨在实现高精度的模拟信号数字化过程。 Sigma-Delta调制是一种将模拟信号转换为数字信号的技术,其基本思想是通过对输入信号进行串级积分与比较操作,不断累积和修正输出数字信号,以提高数字信号的质量和精度。该技术的一个主要特点是,在频谱范围内通过增加噪声的方式来实现较高的分辨率和抗混叠能力。 高精度增量式σ-δADC的研究和设计主要围绕如何进一步提高其分辨率、信噪比和动态范围展开。研究者通常考虑减小量化误差、降低噪声水平、提高系统线性度等方面来实现高精度的数字信号转换。 在设计中,一些关键的技术与方法广泛研究和应用。其中包括选择合适的模数转换器(ADC)、增加积分阶次、采用优化的数字滤波器、设计精细的时钟控制电路等。此外,信号前处理与后处理也对高精度ADC设计具有重要影响,例如信号放大、降噪和校准等。 高精度增量式σ-δADC的应用领域广泛,包括音频信号处理、医疗设备、通信系统等。通过不断的研究和设计,可以进一步提高其性能,满足不同领域对高精度信号转换的需求。 ### 回答2: 高精度增量式σ-δ ADC是一种在模拟数字转换领域中的研究和设计方法。它是一种准确度较高且能够实现高速转换的ADC结构。 σ-δ ADC的相关研究和设计主要涉及到以下几个方面: 首先,研究和设计σ-δ ADC需要对该技术的原理和实现方法有深入的理解。σ-δ ADC利用了过采样和噪声抽取的原理,通过将输入信号进行过采样和噪声滤波,使得ADC的输入动态范围得以扩展,并且能够通过后续数字滤波器去除离散噪声,从而提高转换精度。 其次,需要对增量式ADC的结构和工作原理进行研究和设计。增量式ADC通过逐次逼近的方式,将输入信号进行多次近似转换,从而得到精确度更高的数字输出。因此,需要设计合适的增量量化器和数字逼近器,以实现增量式ADC的高精度转换。 此外,研究和设计高精度增量式σ-δ ADC还需要考虑功耗和速度等方面的问题。对于实际应用中的ADC,除了转换精度外,功耗和速度也是非常重要的指标。因此,需要在高精度的基础上,对ADC的功耗和速度进行优化设计,以满足不同应用的需求。 综上所述,高精度增量式σ-δ ADC的研究与设计是一项综合性的工作,需要深入研究σ-δ ADC的原理和实现方法,设计增量式ADC的结构和工作原理,并对功耗和速度等方面进行优化,以实现高精度和高速转换。这对于提高模拟数字转换的准确度和性能具有重要的意义。 ### 回答3: 高精度增量式σ-δ ADC(Analog to Digital Converter)是一种用于将模拟信号转换为数字信号的电路。它可以实现高精度的信号转换,适用于各种应用中需要准确采集模拟信号的场合。 在研究与设计这种ADC时,需要考虑以下几个关键因素: 首先,选择合适的Σ-Δ调制器结构。Σ-Δ调制器是ADC中的核心部分,它将模拟信号进行过采样,并通过频率调制的方式将高频噪声转移到高频段,从而提高了信号的动态范围和分辨率。常见的Σ-Δ调制器结构有一阶、二阶和三阶等,选择合适的结构能够在保证精度的同时降低功耗和设计复杂度。 其次,设计合理的前端模拟滤波器和数字滤波器。前端模拟滤波器对模拟信号进行预处理,抑制高频和采样频率倍数的谐波。数字滤波器对Σ-Δ调制器输出的脉冲信号进行整形和平滑处理,消除噪声和干扰,同时恢复出模拟信号的频谱信息。合理设计这两个滤波器可以进一步提高精度。 最后,考虑校准与数字后处理技术。由于制造和温度等因素的影响,ADC的增益和偏移等参数可能会有一定的误差。通过采用自校准电路和数字后处理技术,可以将这些误差降低到一个可接受的范围,从而提高ADC的准确性。 总体而言,高精度增量式σ-δ ADC的研究与设计需要从Σ-Δ调制器结构的选择、滤波器设计以及校准与数字后处理等方面进行综合考虑。通过优化这些关键因素,可以实现高精度的模拟信号转换,满足各种应用场景中对于信号采集精度的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值